解释一下这段代码 sm.add_constant(data.iloc[:,1:])
时间: 2023-06-03 12:05:02 浏览: 160
这段代码是在使用statsmodels库中的OLS(ordinary least squares)函数进行线性回归时添加常数列。常数列包含常数1,作为线性回归方程中的截距项,使得模型能够更加准确地拟合数据。其中,data.iloc[:,1:]表示选取数据集的除第一列外的全部列来进行线性回归,而sm.add_constant则是添加常数列的函数。
相关问题
x = data1_norm.iloc[:, :-2] y = data1_norm.iloc[:, -2] x = sm.add_constant(x) model = sm.OLS(y, x).fit() print(model.summary())这个是代码, File "E:\pythonProject1\main.py", line 43 x = data1_norm.iloc[:, :-2] IndentationError: unexpected indent这个是报错怎么改正
这个错误通常是因为缩进不正确导致的。请检查代码中是否有不一致的缩进。在 Python 中,代码块通常使用相同数量的空格进行缩进。建议使用4个空格作为标准缩进。
你可以尝试将第43行的代码重新缩进,确保其与前面的代码行使用相同数量的空格。
例如,你可以将第43行改为以下内容:
```
x = data1_norm.iloc[:, :-2]
```
如果你使用的是 Tab 缩进,请确保所有缩进都使用 Tab 缩进,或者都使用空格缩进。在代码中混合使用 Tab 和空格可能会导致类似的错误。
已有代码如下,请在此基础上完成。import numpy as np import pandas as pd import pandas_datareader as pdr import statsmodels.api as sm pf25 = pdr.get_data_famafrench("25_Portfolios_5x5", start="07/1963", end="06/2022") factor = pdr.get_data_famafrench("F-F_Research_Data_Factors", start="1963/07", end="2022/06") pf25_x = pd.merge(pf25[0], factor[0], how="left", left_index=True, right_index=True) for i in range(0, 25): pf25_x.iloc[:,i] = pf25_x.iloc[:,i] - pf25_x["RF"] x = sm.add_constant(factor[0]["Mkt-RF"]) beta = [] for i in range(0, 25): lm = sm.OLS(pf25_x.iloc[:,i], x).fit() beta.append(lm.params["Mkt-RF"]) x = sm.add_constant(beta) g0, g1 = [], [] for i in range(0, len(pf25_x)): lm = sm.OLS(pf25_x.iloc[i,:-4], x).fit() g0.append(lm.params["const"]) g1.append(lm.params["x1"]) g0_coef = np.mean(g0) g1_coef = np.mean(g1) g0_std = np.std(g0, ddof=1) g1_std = np.std(g1, ddof=1) g0_t = np.mean(g0) / (np.std(g0, ddof=1)/np.sqrt(len(factor[0]))) g1_t = np.mean(g1) / (np.std(g1, ddof=1)/np.sqrt(len(factor[0])))
好的,那么在这段代码的基础上,我们可以进行Shanken Correction的修改,如下所示:
```python
import numpy as np
import pandas as pd
import pandas_datareader as pdr
import statsmodels.api as sm
pf25 = pdr.get_data_famafrench("25_Portfolios_5x5", start="07/1963", end="06/2022")
factor = pdr.get_data_famafrench("F-F_Research_Data_Factors", start="1963/07", end="2022/06")
pf25_x = pd.merge(pf25[0], factor[0], how="left", left_index=True, right_index=True)
for i in range(0, 25):
pf25_x.iloc[:,i] = pf25_x.iloc[:,i] - pf25_x["RF"]
x = sm.add_constant(factor[0]["Mkt-RF"])
beta = []
for i in range(0, 25):
lm = sm.OLS(pf25_x.iloc[:,i], x).fit()
beta.append(lm.params["Mkt-RF"])
x = sm.add_constant(beta)
g0, g1 = [], []
for i in range(0, len(pf25_x)):
lm = sm.OLS(pf25_x.iloc[i,:-4], x).fit()
g0.append(lm.params["const"])
g1.append(lm.params[1])
# 进行Shanken Correction
num_assets = len(beta)
inv_cov_mat = np.linalg.inv(np.cov(x.T))
beta = np.array(beta)
alpha = np.mean(g0)
beta_correction = beta + (beta - 1) * np.dot(inv_cov_mat, beta) * (np.var(beta) / np.var(factor[0]["Mkt-RF"]))
g0_correction = alpha + (alpha - 1) * np.dot(beta_correction.T, np.dot(inv_cov_mat, beta_correction)) * (np.var(beta_correction) / np.var(factor[0]["Mkt-RF"]))
g1_correction = np.mean(g1)
# 计算Shanken correction后的t值
g0_t = g0_correction / (np.std(g0, ddof=1)/np.sqrt(len(factor[0])))
g1_t = g1_correction / (np.std(g1, ddof=1)/np.sqrt(len(factor[0])))
```
这里我们对代码进行了一些修改:
1. 在进行截面回归后,计算beta值的过程中,我们把beta值存储在数组beta中。
2. 在进行Shanken Correction时,我们需要计算协方差矩阵的逆矩阵,使用`np.linalg.inv`函数来计算。
3. 计算beta值的Shanken Correction时,我们使用Numpy中的矩阵乘法函数`np.dot`来计算,最后得到beta_correction。
4. 计算g0的Shanken Correction时,我们使用类似的方法计算alpha_correction和g0_correction。
5. 最后计算Shanken Correction后的t值时,我们使用Shanken Correction后的g0和g1值来计算。
阅读全文