给以下代码添加注释:#include <stdio.h> #include <stdlib.h> #include <mpi.h> #define N 4000 #define TAG 0 void merge(int arr[], int l, int m, int r) { int i, j, k; int n1 = m - l + 1; int n2 = r - m; int L[4000], R[4000]; for (i = 0; i < n1; i++) L[i] = arr[l + i]; for (j = 0; j < n2; j++) R[j] = arr[m + 1 + j]; i = 0; j = 0; k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } while (i < n1) { arr[k] = L[i]; i++; k++; } while (j < n2) { arr[k] = R[j]; j++; k++; } } void mergeSort(int arr[], int l, int r) { if (l < r) { int m = l + (r - l) / 2; mergeSort(arr, l, m); mergeSort(arr, m + 1, r); merge(arr, l, m, r); } } int main(int argc, char** argv) { int rank, size; int i, j, k; int A[N], B[N]; int block_size, start, end; double start_time, end_time; MPI_Status status; MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &size); MPI_Comm_rank(MPI_COMM_WORLD, &rank); block_size = N / size; start = rank * block_size; end = start + block_size - 1; if (rank == size - 1) { end = N - 1; } if (rank == 0) { printf("Generating random array...\n"); for (i = 0; i < N; i++) { A[i] = rand() % 100000; } printf("Sorting array...\n"); } MPI_Barrier(MPI_COMM_WORLD); start_time = MPI_Wtime(); MPI_Scatter(A, block_size, MPI_INT, &B[start], block_size, MPI_INT, 0, MPI_COMM_WORLD); mergeSort(B, start, end); for (i = 0; i < size; i++) { if (rank == i) { MPI_Send(&B[start], block_size, MPI_INT, (rank + 1) % size, TAG, MPI_COMM_WORLD); } else if (rank == (i + 1) % size) { MPI_Recv(&B[start], block_size, MPI_INT, i, TAG, MPI_COMM_WORLD, &status); } } MPI_Barrier(MPI_COMM_WORLD); end_time = MPI_Wtime(); if (rank == 0) { printf("Writing result to file...\n"); FILE* fp; errno_t err; err = fopen_s(&fp, "sorted_array.txt", "w"); for (i = 0; i < N; i++) { fprintf(fp, "%d\n", B[i]); } fclose(fp); printf("Done!\n"); printf("Time used: %.6f seconds\n", end_time - start_time); } MPI_Finalize(); return 0; }

时间: 2024-01-16 21:03:10 浏览: 27
以下是代码注释: ``` #include <stdio.h> #include <stdlib.h> #include <mpi.h> #define N 4000 // 定义数组大小为 4000 #define TAG 0 // 定义消息标识为 0 /** * 归并排序中的合并操作 * @param arr 待排序数组 * @param l 数组左边界 * @param m 数组中间位置 * @param r 数组右边界 */ void merge(int arr[], int l, int m, int r) { int i, j, k; int n1 = m - l + 1; // 计算左子数组的长度 int n2 = r - m; // 计算右子数组的长度 int L[4000], R[4000]; // 定义左右两个子数组 for (i = 0; i < n1; i++) L[i] = arr[l + i]; // 将原数组的左半部分复制到左子数组中 for (j = 0; j < n2; j++) R[j] = arr[m + 1 + j]; // 将原数组的右半部分复制到右子数组中 i = 0; j = 0; k = l; while (i < n1 && j < n2) { // 将左右两个子数组中的元素逐个比较,将小的元素放入原数组中 if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } while (i < n1) { // 将左子数组中剩余的元素放入原数组中 arr[k] = L[i]; i++; k++; } while (j < n2) { // 将右子数组中剩余的元素放入原数组中 arr[k] = R[j]; j++; k++; } } /** * 归并排序 * @param arr 待排序数组 * @param l 数组左边界 * @param r 数组右边界 */ void mergeSort(int arr[], int l, int r) { if (l < r) { // 如果数组长度大于 1,就将其分为左右两个子数组 int m = l + (r - l) / 2; // 取中间位置 mergeSort(arr, l, m); // 对左子数组进行排序 mergeSort(arr, m + 1, r); // 对右子数组进行排序 merge(arr, l, m, r); // 合并左右两个子数组 } } int main(int argc, char** argv) { int rank, size; int i, j, k; int A[N], B[N]; int block_size, start, end; double start_time, end_time; MPI_Status status; MPI_Init(&argc, &argv); // 初始化 MPI 环境 MPI_Comm_size(MPI_COMM_WORLD, &size); // 获取进程数 MPI_Comm_rank(MPI_COMM_WORLD, &rank); // 获取当前进程的编号 block_size = N / size; // 计算每个进程处理的数组块的大小 start = rank * block_size; // 计算当前进程处理的数组块的起始位置 end = start + block_size - 1; // 计算当前进程处理的数组块的结束位置 if (rank == size - 1) { // 如果是最后一个进程,需要处理剩余的部分 end = N - 1; } if (rank == 0) { // 只有进程 0 才生成随机数组并输出排序前的信息 printf("Generating random array...\n"); for (i = 0; i < N; i++) { A[i] = rand() % 100000; } printf("Sorting array...\n"); } MPI_Barrier(MPI_COMM_WORLD); // 等待所有进程都准备好 start_time = MPI_Wtime(); // 记录开始时间 // 将数组 A 按照块大小分配给各个进程 MPI_Scatter(A, block_size, MPI_INT, &B[start], block_size, MPI_INT, 0, MPI_COMM_WORLD); mergeSort(B, start, end); // 对当前进程处理的数组块进行排序 // 将排好序的数组块发送给下一个进程,并接收上一个进程发送的排好序的数组块 for (i = 0; i < size; i++) { if (rank == i) { MPI_Send(&B[start], block_size, MPI_INT, (rank + 1) % size, TAG, MPI_COMM_WORLD); } else if (rank == (i + 1) % size) { MPI_Recv(&B[start], block_size, MPI_INT, i, TAG, MPI_COMM_WORLD, &status); } } MPI_Barrier(MPI_COMM_WORLD); // 等待所有进程都完成排序 end_time = MPI_Wtime(); // 记录结束时间 if (rank == 0) { // 只有进程 0 才将排好序的数组写入文件,并输出排序后的信息 printf("Writing result to file...\n"); FILE* fp; errno_t err; err = fopen_s(&fp, "sorted_array.txt", "w"); for (i = 0; i < N; i++) { fprintf(fp, "%d\n", B[i]); } fclose(fp); printf("Done!\n"); printf("Time used: %.6f seconds\n", end_time - start_time); } MPI_Finalize(); // 结束 MPI 环境 return 0; } ``` 注释包括: - 头文件和宏定义的含义 - 各个函数的功能和参数说明 - 每个操作的作用和用途 - MPI 相关操作的含义和作用

相关推荐

使以下程序减小占用内存,并能准确显示结果:#include <stdio.h> #include <stdlib.h> #include <mpi.h> #define N 6 int main(int argc, char** argv) { int rank, size; int A[N][N], B[N][N], C[N][N], sub_A[N / N][N], sub_B[N / N][N], sub_C[N / N][N]; int i, j, k, l, m, n; MPI_Status status; MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &rank); MPI_Comm_size(MPI_COMM_WORLD, &size); if (N % size != 0) { if (rank == 0) { printf("Matrix size should be multiple of number of processes\n"); } MPI_Finalize(); return 0; } if (rank == 0) { for (i = 0; i < N; i++) { for (j = 0; j < N; j++) { A[i][j] = i * j; B[i][j] = i + j; } } } MPI_Scatter(A, N * N / size, MPI_INT, sub_A, N * N / size, MPI_INT, 0, MPI_COMM_WORLD); MPI_Scatter(B, N * N / size, MPI_INT, sub_B, N * N / size, MPI_INT, 0, MPI_COMM_WORLD); for (i = 0; i < N / N; i++) { for (j = 0; j < N; j++) { sub_C[i][j] = 0; } } for (i = 0; i < N / N; i++) { for (j = 0; j < N; j++) { for (k = 0; k < N / N; k++) { sub_C[i][j] += sub_A[i][k] * sub_B[k][j]; } } } MPI_Gather(sub_C, N * N / size, MPI_INT, C, N * N / size, MPI_INT, 0, MPI_COMM_WORLD); if (rank == 0) { for (i = 0; i < N; i++) { for (j = 0; j < N; j++) { for (k = 0; k < size; k++) { for (l = 0; l < N / N; l++) { m = i % (N / N) + l * (N / N); n = j + k * N / N; sub_C[l][j] = C[m][n]; } } for (k = 0; k < N / N; k++) { for (l = 0; l < size; l++) { C[i][j] += sub_C[k][j + l * N / N]; } } } } } if (rank == 0) { for (i = 0; i < N; i++) { for (j = 0; j < N; j++) { printf("%d ", C[i][j]); } printf("\n"); } } MPI_Finalize(); return 0; }

改进此程序,并作详细注解:#include <stdio.h> #include <stdlib.h> #include <mpi.h> #define N 6 int main(int argc, char** argv) { int rank, size; int A[N][N], B[N][N], C[N][N], sub_A[N / N][N], sub_B[N / N][N], sub_C[N / N][N]; int i, j, k, l, m, n; MPI_Status status; MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &rank); MPI_Comm_size(MPI_COMM_WORLD, &size); if (N % size != 0) { if (rank == 0) { printf("Matrix size should be multiple of number of processes\n"); } MPI_Finalize(); return 0; } // Initialize matrices A and B if (rank == 0) { for (i = 0; i < N; i++) { for (j = 0; j < N; j++) { A[i][j] = i * j; B[i][j] = i + j; } } } // Scatter matrix A and B to all processes MPI_Scatter(A, N * N / size, MPI_INT, sub_A, N * N / size, MPI_INT, 0, MPI_COMM_WORLD); MPI_Scatter(B, N * N / size, MPI_INT, sub_B, N * N / size, MPI_INT, 0, MPI_COMM_WORLD); // Initialize sub_C matrix to 0 for (i = 0; i < N / N; i++) { for (j = 0; j < N; j++) { sub_C[i][j] = 0; } } // Perform multiplication on sub matrices for (i = 0; i < N / N; i++) { for (j = 0; j < N; j++) { for (k = 0; k < N / N; k++) { sub_C[i][j] += sub_A[i][k] * sub_B[k][j]; } } } // Gather sub matrices to process 0 MPI_Gather(sub_C, N * N / size, MPI_INT, C, N * N / size, MPI_INT, 0, MPI_COMM_WORLD); // Perform reduction on matrix C if (rank == 0) { for (i = 0; i < N; i++) { for (j = 0; j < N; j++) { for (k = 0; k < size; k++) { for (l = 0; l < N / N; l++) { m = i % (N / N) + l * (N / N); n = j + k * N / N; sub_C[l][j] = C[m][n]; } } for (k = 0; k < N / N; k++) { for (l = 0; l < size; l++) { C[i][j] += sub_C[k][j + l * N / N]; } } } } } // Output matrix C if (rank == 0) { for (i = 0; i < N; i++) { for (j = 0; j < N; j++) { printf("%d ", C[i][j]); } printf("\n"); } } MPI_Finalize(); return 0; }

改进以下代码:#include <stdio.h> #include <stdlib.h> #include <mpi.h> #define N 4000 #define TAG 0 void merge(int arr[], int l, int m, int r) { int i, j, k; int n1 = m - l + 1; int n2 = r - m; int L[4000], R[4000]; for (i = 0; i < n1; i++) L[i] = arr[l + i]; for (j = 0; j < n2; j++) R[j] = arr[m + 1 + j]; i = 0; j = 0; k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } while (i < n1) { arr[k] = L[i]; i++; k++; } while (j < n2) { arr[k] = R[j]; j++; k++; } } void mergeSort(int arr[], int l, int r) { if (l < r) { int m = l + (r - l) / 2; mergeSort(arr, l, m); mergeSort(arr, m + 1, r); merge(arr, l, m, r); } } int main(int argc, char** argv) { int rank, size; int i, j, k; int A[N], B[N]; int block_size, start, end; double start_time, end_time; MPI_Status status; MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &size); MPI_Comm_rank(MPI_COMM_WORLD, &rank); block_size = N / size; start = rank * block_size; end = start + block_size - 1; if (rank == size - 1) { end = N - 1; } if (rank == 0) { printf("Generating random array...\n"); for (i = 0; i < N; i++) { A[i] = rand() % 100000; } printf("Sorting array...\n"); } MPI_Barrier(MPI_COMM_WORLD); start_time = MPI_Wtime(); MPI_Scatter(A, block_size, MPI_INT, &B[start], block_size, MPI_INT, 0, MPI_COMM_WORLD); mergeSort(B, start, end); for (i = 0; i < size; i++) { if (rank == i) { MPI_Send(&B[start], block_size, MPI_INT, (rank + 1) % size, TAG, MPI_COMM_WORLD); } else if (rank == (i + 1) % size) { MPI_Recv(&B[start], block_size, MPI_INT, i, TAG, MPI_COMM_WORLD, &status); } } MPI_Barrier(MPI_COMM_WORLD); end_time = MPI_Wtime(); if (rank == 0) { printf("Writing result to file...\n"); FILE* fp; errno_t err; err = fopen_s(&fp, "sorted_array.txt", "w"); for (i = 0; i < N; i++) { fprintf(fp, "%d\n", B[i]); } fclose(fp); printf("Done!\n"); printf("Time used: %.6f seconds\n", end_time - start_time); } MPI_Finalize(); return 0; }

请优化(不是并行化,而是从cache、函数调用开销、编译等方面优化)下面的串行程序,测试每个优化措施的效果。用Linux环境,编译器不限(gcc,icc等都可以)。以报告形式上传。 #include <stdio.h> #include <stdlib.h> #include <math.h> #define M 1500 #define NM 2000 #define N 2500 void generate_matrix(double *A, long m, long n) {     long i, j;     for (i=0; i<m; i++)         for (j=0; j<n; j++) {             A[i*n + j] = rand()/(RAND_MAX+1.0); //0 - 1             A[i*n + j] = 2*A[i*n + j] - 1;  //-1 - +1         } } double handle_data(double data) {     return sqrt(fabs(data)); } void handle_matrix(double *A, double *B, double *C, long m, long nm, long n) {     long i, j, k;     double s;     for (i=0; i<m; i++) {         for (j=0; j<n; j++) {             s = 0;             for (k=0; k<nm; k++)                 s += A[i*nm + k] * B[k*n + j];             C[i*n + j] = handle_data(s);         }     } } double sum_matrix(double *A, long m, long n) {     long i, j;     double s = 0;     for (i=0; i<m; i++)          for (j=0; j<n; j++)              s += A[i*n + j];     return s; } int main() {     double *A = (double *)malloc(M * NM * sizeof(double));     double *B = (double *)malloc(NM * N * sizeof(double));     double *C = (double *)malloc(M * N * sizeof(double));          generate_matrix(A, M, NM);     generate_matrix(B, NM, N);          struct timeval begin_time, end_time;     double run_time_ms;     gettimeofday(&begin_time);     handle_matrix(A, B, C, M, NM, N);     gettimeofday(&end_time);     run_time_ms =         (end_time.tv_sec - begin_time.tv_sec)*1000 +         (end_time.tv_usec - begin_time.tv_usec)*1.0/1000;     printf("run_time = %lfms\n", run_time_ms);     printf("Sum = %.4f\n", sum_matrix(C, M, N));          free(A);     free(B);     free(C);     return 0; }

最新推荐

recommend-type

yolov5-face-landmarks-opencv

yolov5检测人脸和关键点,只依赖opencv库就可以运行,程序包含C++和Python两个版本的。 本套程序根据https://github.com/deepcam-cn/yolov5-face 里提供的训练模型.pt文件。转换成onnx文件, 然后使用opencv读取onnx文件做前向推理,onnx文件从百度云盘下载,下载 链接:https://pan.baidu.com/s/14qvEOB90CcVJwVC5jNcu3A 提取码:duwc 下载完成后,onnx文件存放目录里,C++版本的主程序是main_yolo.cpp,Python版本的主程序是main.py 。此外,还有一个main_export_onnx.py文件,它是读取pytorch训练模型.pt文件生成onnx文件的。 如果你想重新生成onnx文件,不能直接在该目录下运行的,你需要把文件拷贝到https://github.com/deepcam-cn/yolov5-face 的主目录里运行,就可以生成onnx文件。
recommend-type

setuptools-0.6c8-py2.5.egg

文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望