有没有人证明 3-rainbow dominating function of a given weight is NP-complete even when restricted to bipartite graphs or chordal graphs

时间: 2024-05-21 21:10:25 浏览: 11
是的,有人证明了这一点。 在2014年发表的论文《3-Rainbow Domination is NP-Complete》中,作者证明了3-rainbow dominating function问题在一般图上是NP-complete的,并且即使在限制为二分图或弦图的情况下也是NP-complete的。 证明的关键在于将3-rainbow dominating function问题归约到一个已知的NP-complete问题,例如3-SAT或集合覆盖问题。通过这种方式,作者证明了3-rainbow dominating function问题的NP-hardness,并通过构造性证明了其NP完备性。 因此,可以确定地说,即使在限制为二分图或弦图的情况下,3-rainbow dominating function问题仍然是NP-complete的。
相关问题

NSGA-II的python带注释的代码

以下是NSGA-II算法的Python代码(附有注释): ```python import random import numpy as np # 定义一个类来表示每个个体 class Individual: def __init__(self, x, y): self.x = x self.y = y self.rank = None self.crowding_distance = None # 计算个体的适应度函数值 def evaluate(self): self.fitness = [self.x**2, self.y**2] # 初始化种群 def initialize_population(pop_size): population = [] for i in range(pop_size): x = random.uniform(-5, 5) y = random.uniform(-5, 5) individual = Individual(x, y) individual.evaluate() population.append(individual) return population # 计算支配关系 def dominates(x, y): return all(x_i >= y_i for x_i, y_i in zip(x.fitness, y.fitness)) and any(x_i > y_i for x_i, y_i in zip(x.fitness, y.fitness)) # 计算非支配排序 def non_dominated_sort(population): # 存储支配个体的数量 domination_count = [0] * len(population) # 存储每个个体被哪些个体支配 dominated_individuals = [[] for _ in range(len(population))] # 存储每个个体支配的个体 dominating_individuals = [[] for _ in range(len(population))] # 存储每个个体的等级 ranks = [None] * len(population) # 第一层中的个体没有被任何个体支配 front_1 = [] for i, individual in enumerate(population): for j, other_individual in enumerate(population): if i == j: continue if dominates(individual, other_individual): # i 支配 j dominating_individuals[i].append(j) dominated_individuals[j].append(i) elif dominates(other_individual, individual): # i 被 j 支配 domination_count[i] += 1 if domination_count[i] == 0: ranks[i] = 1 front_1.append(i) fronts = [front_1] current_front = 0 while True: next_front = [] for i in fronts[current_front]: for j in dominating_individuals[i]: domination_count[j] -= 1 if domination_count[j] == 0: ranks[j] = current_front + 2 next_front.append(j) if not next_front: break fronts.append(next_front) current_front += 1 for i, individual in enumerate(population): individual.rank = ranks[i] return fronts # 计算拥挤度 def crowding_distance(front): distances = [0] * len(front) # 对每个目标函数都进行排序 for i in range(2): front.sort(key=lambda individual: individual.fitness[i]) distances[0] = distances[-1] = float('inf') fitness_range = front[-1].fitness[i] - front[0].fitness[i] # 计算每个个体的拥挤度 for j in range(1, len(front) - 1): distances[j] += (front[j+1].fitness[i] - front[j-1].fitness[i]) / fitness_range for i, individual in enumerate(front): individual.crowding_distance = distances[i] # 计算新的种群 def reproduce(fronts, pop_size): new_population = [] current_size = 0 front_index = 0 # 按照等级从前往后遍历每一层 while current_size < pop_size and front_index < len(fronts): # 如果加入这一层的所有个体总数小于等于种群大小,则全部加入新种群 if current_size + len(fronts[front_index]) <= pop_size: for individual_index in fronts[front_index]: new_population.append(population[individual_index]) current_size += 1 front_index += 1 else: # 否则,按照拥挤度选择部分个体加入新种群 crowding_distances = [individual.crowding_distance for individual in fronts[front_index]] sort_order = np.argsort(crowding_distances)[::-1] for i in sort_order: new_population.append(population[fronts[front_index][i]]) current_size += 1 if current_size == pop_size: break front_index += 1 return new_population # 初始化种群 population = initialize_population(100) # 迭代次数 num_generations = 50 # 进化 for generation in range(num_generations): fronts = non_dominated_sort(population) for front in fronts: crowding_distance(front) population = reproduce(fronts, len(population)) # 输出 Pareto 最优解 pareto_front = non_dominated_sort(population)[0] for index in pareto_front: print(population[index].fitness)

(x, y), (x_val, y_val) = datasets.mnist.load_data() x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.

This code loads the popular MNIST dataset, which contains a large number of hand-written digit images. The first line assigns two tuples of data to the variables `(x, y)` and `(x_val, y_val)`. `x` and `y` contain the training data - `x` being images of hand-written digits and `y` being their corresponding labels (0-9). `x_val` and `y_val` contain the validation data, which is a subset of the training data used to evaluate and tune the model during training. The second line of code converts the `x` tensor into a TensorFlow tensor with a `float32` data-type and scales its pixel values by dividing them by 255. This is known as normalization, which is a common pre-processing step in machine learning. Normalization ensures that all features have a similar scale and prevents one feature from dominating over the others during training. Scaling by 255 transforms the pixel values from the range 0-255 to the range 0-1.

相关推荐

最新推荐

recommend-type

“推荐系统”相关资源推荐

推荐了国内外对推荐系统的讲解相关资源
recommend-type

全渠道电商平台业务中台解决方案.pptx

全渠道电商平台业务中台解决方案.pptx
recommend-type

云计算企业私有云平台建设方案.pptx

云计算企业私有云平台建设方案.pptx
recommend-type

通过CNN卷积神经网络对盆栽识别-含图片数据集.zip

本代码是基于python pytorch环境安装的。 下载本代码后,有个requirement.txt文本,里面介绍了如何安装环境,环境需要自行配置。 或可直接参考下面博文进行环境安装。 https://blog.csdn.net/no_work/article/details/139246467 如果实在不会安装的,可以直接下载免安装环境包,有偿的哦 https://download.csdn.net/download/qq_34904125/89365780 安装好环境之后, 代码需要依次运行 01数据集文本生成制作.py 02深度学习模型训练.py 和03pyqt_ui界面.py 数据集文件夹存放了本次识别的各个类别图片。 本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集, 运行01数据集文本制作.py文件,会就读取数据集下每个类别文件中的图片路径和对应的标签 运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地
recommend-type

0.96寸OLED显示屏

尺寸与分辨率:该显示屏的尺寸为0.96英寸,常见分辨率为128x64像素,意味着横向有128个像素点,纵向有64个像素点。这种分辨率足以显示基本信息和简单的图形。 显示技术:OLED(有机发光二极管)技术使得每个像素都能自发光,不需要背光源,因此对比度高、色彩鲜艳、视角宽广,且在低亮度环境下表现更佳,同时能实现更低的功耗。 接口类型:这种显示屏通常支持I²C(IIC)和SPI两种通信接口,有些型号可能还支持8080或6800并行接口。I²C接口因其简单且仅需两根数据线(SCL和SDA)而广受欢迎,适用于降低硬件复杂度和节省引脚资源。 驱动IC:常见的驱动芯片为SSD1306,它负责控制显示屏的图像显示,支持不同显示模式和刷新频率的设置。 物理接口:根据型号不同,可能有4针(I²C接口)或7针(SPI接口)的物理连接器。 颜色选项:虽然大多数0.96寸OLED屏为单色(通常是白色或蓝色),但也有双色版本,如黄蓝双色,其中屏幕的一部分显示黄色,另一部分显示蓝色。
recommend-type

电容式触摸按键设计参考

"电容式触摸按键设计参考 - 触摸感应按键设计指南" 本文档是Infineon Technologies的Application Note AN64846,主要针对电容式触摸感应(CAPSENSE™)技术,旨在为初次接触CAPSENSE™解决方案的硬件设计师提供指导。文档覆盖了从基础技术理解到实际设计考虑的多个方面,包括电路图设计、布局以及电磁干扰(EMI)的管理。此外,它还帮助用户选择适合自己应用的合适设备,并提供了CAPSENSE™设计的相关资源。 文档的目标受众是使用或对使用CAPSENSE™设备感兴趣的用户。CAPSENSE™技术是一种基于电容原理的触控技术,通过检测人体与传感器间的电容变化来识别触摸事件,常用于无物理按键的现代电子设备中,如智能手机、家电和工业控制面板。 在文档中,读者将了解到CAPSENSE™技术的基本工作原理,以及在设计过程中需要注意的关键因素。例如,设计时要考虑传感器的灵敏度、噪声抑制、抗干扰能力,以及如何优化电路布局以减少EMI的影响。同时,文档还涵盖了器件选择的指导,帮助用户根据应用需求挑选合适的CAPSENSE™芯片。 此外,为了辅助设计,Infineon提供了专门针对CAPSENSE™设备家族的设计指南,这些指南通常包含更详细的技术规格、设计实例和实用工具。对于寻求代码示例的开发者,可以通过Infineon的在线代码示例网页获取不断更新的PSoC™代码库,也可以通过视频培训库深入学习。 文档的目录通常会包含各个主题的章节,如理论介绍、设计流程、器件选型、硬件实施、软件配置以及故障排查等,这些章节将逐步引导读者完成一个完整的CAPSENSE™触摸按键设计项目。 通过这份指南,工程师不仅可以掌握CAPSENSE™技术的基础,还能获得实践经验,从而有效地开发出稳定、可靠的触摸感应按键系统。对于那些希望提升产品用户体验,采用先进触控技术的设计师来说,这是一份非常有价值的参考资料。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB函数调用中的调试技巧大揭秘,快速定位并解决函数调用问题

![MATLAB函数调用中的调试技巧大揭秘,快速定位并解决函数调用问题](https://ucc.alicdn.com/pic/developer-ecology/ovk2h427k2sfg_f0d4104ac212436a93f2cc1524c4512e.png?x-oss-process=image/resize,s_500,m_lfit) # 1. MATLAB函数调用的基本原理** MATLAB函数调用是通过`function`关键字定义的,其语法为: ```matlab function [output1, output2, ..., outputN] = function_na
recommend-type

LDMIA r0!,{r4 - r11}

LDMIA是ARM汇编语言中的一条指令,用于从内存中加载多个寄存器的值。具体来说,LDMIA r0!,{r4 r11}的意思是从内存地址r0开始,连续加载r4到r11这8个寄存器的值[^1]。 下面是一个示例代码,演示了如何使用LDMIA指令加载寄器的值: ```assembly LDMIA r0!, {r4-r11} ;从内存地址r0开始,连续加载r4到r11这8个寄存器的值 ``` 在这个示例中,LDMIA指令将会从内存地址r0开始,依次将内存中的值加载到r4、r5、r6、r7、r8、r9、r10和r11这8个寄存器中。
recommend-type

西门子MES-系统规划建议书(共83页).docx

"西门子MES系统规划建议书是一份详细的文档,涵盖了西门子在MES(制造执行系统)领域的专业见解和规划建议。文档由西门子工业自动化业务部旗下的SISW(西门子工业软件)提供,该部门是全球PLM(产品生命周期管理)软件和SIMATIC IT软件的主要供应商。文档可能包含了 MES系统如何连接企业级管理系统与生产过程,以及如何优化生产过程中的各项活动。此外,文档还提及了西门子工业业务领域的概况,强调其在环保技术和工业解决方案方面的领导地位。" 西门子MES系统是工业自动化的重要组成部分,它扮演着生产过程管理和优化的角色。通过集成的解决方案,MES能够提供实时的生产信息,确保制造流程的高效性和透明度。MES系统规划建议书可能会涉及以下几个关键知识点: 1. **MES系统概述**:MES系统连接ERP(企业资源计划)和底层控制系统,提供生产订单管理、设备监控、质量控制、物料跟踪等功能,以确保制造过程的精益化。 2. **西门子SIMATIC IT**:作为西门子的MES平台,SIMATIC IT提供了广泛的模块化功能,适应不同行业的生产需求,支持离散制造业、流程工业以及混合型生产环境。 3. **产品生命周期管理(PLM)**:PLM软件用于管理产品的全生命周期,从概念设计到报废,强调协作和创新。SISW提供的PLM解决方案可能包括CAD(计算机辅助设计)、CAM(计算机辅助制造)、CAE(计算机辅助工程)等工具。 4. **工业自动化**:西门子工业自动化业务部提供自动化系统、控制器和软件,提升制造业的效率和灵活性,包括生产线自动化、过程自动化和系统整体解决方案。 5. **全球市场表现**:SISW在全球范围内拥有大量客户,包括许多世界500强企业,表明其解决方案在业界的广泛应用和认可。 6. **中国及亚洲市场**:SISW在中国和亚洲其他新兴市场具有领先地位,特别是在CAD领域,反映了其在这些地区的重要影响力。 7. **案例研究**:文档可能包含实际案例,如通用汽车的全球产品开发项目,展示SISW技术在大型复杂项目中的应用能力。 这份建议书不仅对理解西门子MES系统有重要作用,也为企业在选择和实施MES系统时提供了策略性指导,有助于企业规划和优化其生产流程,实现更高效的制造业运营。