实例说明一元线性回归分析模型
时间: 2023-07-12 19:04:27 浏览: 94
好的,以下以房价和房屋面积的数据为例说明一元线性回归分析模型的建立:
1. 收集数据:收集一组自变量和因变量的数据,例如某个城市的房价和房屋面积。假设我们收集了10组数据,如下表所示:
| 房屋面积(平方米) | 房价(万元) |
| :----------------: | :----------: |
| 80 | 120 |
| 90 | 130 |
| 100 | 142 |
| 110 | 150 |
| 120 | 160 |
| 130 | 170 |
| 140 | 180 |
| 150 | 190 |
| 160 | 200 |
| 170 | 210 |
2. 确定自变量和因变量:在上述数据中,房屋面积为自变量,房价为因变量。
3. 绘制散点图:将数据以散点图的形式表现出来,如下图所示,可以看出自变量和因变量之间存在较为明显的正相关关系。
![房价和房屋面积的散点图](https://i.imgur.com/ti0Wv4M.png)
4. 确定回归方程:通过最小二乘法等方法,可以确定一条直线方程,即为回归方程。在本例中,回归方程为:
```
y = 102.6 + 1.28x
```
其中,y为房价(单位:万元),x为房屋面积(单位:平方米)。
5. 检验模型:通过计算残差的标准差、残差的分布等指标,可以判断回归方程是否合理。在本例中,残差的标准差为4.09,残差的分布也符合正态分布的要求,因此可以认为回归方程是合理的。
6. 使用模型:如果模型合理,可以利用回归方程进行预测和分析。在本例中,可以通过回归方程预测某个房屋面积对应的房价。例如,如果某个房屋的面积为120平方米,那么根据回归方程可得该房屋的预测房价为158.6万元。
阅读全文