帮我翻译一下以下代码: for var in self.var_list: self.m[var] = tf.Variable(tf.zeros(tf.shape(var.initial_value)), trainable=False) self.v[var] = tf.Variable(tf.zeros(tf.shape(var.initial_value)), trainable=False)
时间: 2023-06-03 08:03:16 浏览: 138
很高兴为您服务!以下是代码的翻译:
对于self.var_list中的每一个变量var,执行以下操作:
- 为每个变量var创建一个名为self.m[var]的TensorFlow变量,其值为初始化为全0,且不可训练的。
- 为每个变量var创建一个名为self.v[var]的TensorFlow变量,其值为初始化为全0,且不可训练的。
希望对您有帮助!如果您还有其他问题,可以继续问我哦!
相关问题
逐行解释代码: def forward_Boosting(self, x, weight_mat=None): out = self.gru_features(x) fea = out[0] if self.use_bottleneck: fea_bottleneck = self.bottleneck(fea[:, -1, :]) fc_out = self.fc(fea_bottleneck).squeeze() else: fc_out = self.fc_out(fea[:, -1, :]).squeeze() out_list_all = out[1] out_list_s, out_list_t = self.get_features(out_list_all) loss_transfer = torch.zeros((1,)).cuda() if weight_mat is None: weight = (1.0 / self.len_seq * torch.ones(self.num_layers, self.len_seq)).cuda() else: weight = weight_mat dist_mat = torch.zeros(self.num_layers, self.len_seq).cuda() for i in range(len(out_list_s)): criterion_transder = TransferLoss( loss_type=self.trans_loss, input_dim=out_list_s[i].shape[2]) for j in range(self.len_seq): loss_trans = criterion_transder.compute( out_list_s[i][:, j, :], out_list_t[i][:, j, :]) loss_transfer = loss_transfer + weight[i, j] * loss_trans dist_mat[i, j] = loss_trans return fc_out, loss_transfer, dist_mat, weight
逐行解释这段代码:
1. `def forward_Boosting(self, x, weight_mat=None):`:这是一个方法定义,接受输入张量`x`和权重矩阵`weight_mat`(可选参数)作为输入。
2. `out = self.gru_features(x)`:将输入张量`x`传递给`self.gru_features`方法进行特征提取,得到一个包含特征张量和其他信息的元组`out`。
3. `fea = out[0]`:从元组`out`中获取特征张量,赋值给变量`fea`。
4. `if self.use_bottleneck:`:如果模型使用了瓶颈层(`self.use_bottleneck=True`),则执行以下代码块:
- `fea_bottleneck = self.bottleneck(fea[:, -1, :])`:将`fea[:, -1, :]`传递给瓶颈层`self.bottleneck`进行处理,得到瓶颈层的输出张量,赋值给变量`fea_bottleneck`。
- `fc_out = self.fc(fea_bottleneck).squeeze()`:将瓶颈层的输出张量传递给全连接层`self.fc`进行处理,得到最终的输出张量`fc_out`。使用`squeeze()`方法将张量中的维度为1的维度去除。
5. `else:`:如果没有使用瓶颈层,则执行以下代码块:
- `fc_out = self.fc_out(fea[:, -1, :]).squeeze()`:将`fea[:, -1, :]`传递给输出层`self.fc_out`进行处理,得到最终的输出张量`fc_out`。同样,使用`squeeze()`方法将张量中的维度为1的维度去除。
6. `out_list_all = out[1]`:从元组`out`中获取其他信息,赋值给变量`out_list_all`。
7. `out_list_s, out_list_t = self.get_features(out_list_all)`:调用`self.get_features`方法将`out_list_all`划分为两个特征列表`out_list_s`和`out_list_t`。
8. `loss_transfer = torch.zeros((1,)).cuda()`:创建一个大小为`(1,)`的零张量,并将其移动到GPU上进行计算,用于存储损失值`loss_transfer`。
9. `if weight_mat is None:`:如果权重矩阵`weight_mat`为`None`,则执行以下代码块:
- `weight = (1.0 / self.len_seq * torch.ones(self.num_layers, self.len_seq)).cuda()`:创建一个大小为`(self.num_layers, self.len_seq)`的张量,每个元素初始化为`(1.0 / self.len_seq)`,并将其移动到GPU上进行计算,赋值给变量`weight`。用于存储权重值。
10. `else:`:如果权重矩阵`weight_mat`不为`None`,则执行以下代码块:
- `weight = weight_mat`:将输入的权重矩阵`weight_mat`赋值给变量`weight`。
11. `dist_mat = torch.zeros(self.num_layers, self.len_seq).cuda()`:创建一个大小为`(self.num_layers, self.len_seq)`的零张量,并将其移动到GPU上进行计算,用于存储距离矩阵`dist_mat`。
12. `for i in range(len(out_list_s)):`:对特征列表`out_list_s`进行迭代,循环变量为`i`。
- `criterion_transder = TransferLoss(loss_type=self.trans_loss, input_dim=out_list_s[i].shape[2])`:根据损失类型和特征维度创建一个TransferLoss的实例,赋值给变量`criterion_transder`。
- `for j in range(self.len_seq):`:对时间步进行迭代,循环变量为`j`。
- `loss_trans = criterion_transder.compute(out_list_s[i][:, j, :], out_list_t[i][:, j, :])`:计算TransferLoss损失值,传入当前时间步的特征张量`out_list_s[i][:, j, :]`和目标特征张量`out_list_t[i][:, j, :]`,并将计算得到的损失值赋值给变量`loss_trans`。
- `loss_transfer = loss_transfer + weight[i, j] * loss_trans`:根据权重值将损失值加权累加到总损失值`loss_transfer`中。
- `dist_mat[i, j] = loss_trans`:将损失值存储到距离矩阵`dist_mat`的对应位置上。
13. `return fc_out, loss_transfer, dist_mat, weight`:返回最终的输出张量`fc_out`、损失值`loss_transfer`、距离矩阵`dist_mat`和权重矩阵`weight`作为结果。
def __forward(self, x, train_flg): if self.running_mean is None: N, D = x.shape self.running_mean = np.zeros(D) self.running_var = np.zeros(D) if train_flg: mu = x.mean(axis=0) xc = x - mu var = np.mean(xc**2, axis=0) std = np.sqrt(var + 10e-7) xn = xc / std self.batch_size = x.shape[0] self.xc = xc self.xn = xn self.std = std self.running_mean = self.momentum * self.running_mean + (1-self.momentum) * mu self.running_var = self.momentum * self.running_var + (1-self.momentum) * var else: xc = x - self.running_mean xn = xc / ((np.sqrt(self.running_var + 10e-7))) out = self.gamma * xn + self.beta return out
这段代码是一个私有方法,用于实现批量归一化操作。输入参数 x 是一个张量,train_flg 是一个布尔类型的变量,表示当前是否处于训练模式。如果 self.running_mean 为空,那么它会被初始化为一个全零的数组,self.running_var 也同理。在训练模式下,它首先计算输入张量 x 的均值 mu 和方差 var,并将其用于对输入张量 x 进行标准化(即归一化)。然后,将标准化后的张量 xn 乘以缩放参数 gamma,再加上平移参数 beta,得到最终的输出张量 out。在测试模式下,它使用训练时计算的均值和方差对输入张量 x 进行标准化,并得到最终的输出张量 out。返回值是一个张量 out。
阅读全文