画出输入序列为[80,40,30,60,81,90,100,10]的建堆过程。

时间: 2023-09-03 14:26:21 浏览: 192
### 回答1: 首先,我们把输入序列转化为一个完全二叉树: ``` 80 / \ 40 30 / \ / \ 60 81 90 100 / 10 ``` 接着,我们从最后一个非叶子节点(也就是40)开始,依次进行“下滤”操作,使得整个树满足堆的性质。 第一次下滤操作: ``` 80 / \ 81 30 / \ / \ 60 40 90 100 / 10 ``` 第二次下滤操作: ``` 80 / \ 81 90 / \ / \ 60 40 30 100 / 10 ``` 第三次下滤操作: ``` 100 / \ 81 90 / \ / \ 60 40 30 80 / 10 ``` 最终得到一个满足堆的性质的二叉树。 ### 回答2: 在给定的输入序列[80,40,30,60,81,90,100,10]中,我们将使用堆排序算法进行建堆过程。建堆是将无序的序列转换为一个堆的过程,其中堆的定义是父节点的值大于(或小于)它的子节点的值。 首先,让我们从输入序列的最后一个元素开始进行建堆。在这个例子中,最后一个元素是10,它将被置于堆中的根节点。 然后,我们将以相反的顺序遍历输入序列,从倒数第二个元素开始。我们将使用一个循环来依次对每个元素执行以下操作: 1. 比较当前元素与其父节点的值。如果当前元素的值大于其父节点的值,则交换它们的位置,在这个例子中第一个比较的元素是100和10,它们的值并不满足这个条件,所以不交换位置。 2. 然后,我们继续比较当前元素与其父节点的值,直到当前元素的值小于或等于其父节点的值。在这个例子中,第二个比较的元素是90和40,它们的值满足这个条件,所以它们的位置被交换。 3. 循环继续,我们继续比较当前元素与其父节点的值,并交换它们的位置,直到当前元素的值小于或等于其父节点的值。在这个例子中,40将与其父节点的值80交换位置。 4. 在这个建堆过程中,我们会持续对每个元素进行比较和交换的操作,直到达到堆的根节点为止。这样,我们就得到了一个满足堆的定义的堆。 最后,输出的建堆结果为[100,81,90,40,80,30,60,10],其中堆的根节点是100,它的两个子节点是81和90,而这两个子节点又各自有各自的子节点。以上就是按照输入序列[80,40,30,60,81,90,100,10]进行建堆的过程。 ### 回答3: 建堆是一个将无序数组转化为堆的过程。对于给定的输入序列[80,40,30,60,81,90,100,10],我们可以按照以下步骤进行建堆: 1. 从最后一个非叶子节点开始,向上遍历每个节点。 - 由于最后一个非叶子节点的索引为n//2-1,其中n为数组长度,所以我们从索引3开始。 - 数据序列为[80,40,30,60,81,90,100,10]。 - 当前节点为60,其索引为3。 - 比较当前节点与其子节点[81,90]的值,将较大值交换到当前节点。 - 得到新的数据序列为[80,40,30,81,60,90,100,10]。 2. 继续向上遍历每个节点。 - 当前节点为40,其索引为1。 - 比较当前节点与其子节点[81,60]的值,将较大值交换到当前节点。 - 得到新的数据序列为[80,81,30,40,60,90,100,10]。 3. 继续向上遍历每个节点。 - 当前节点为80,其索引为0。 - 比较当前节点与其子节点[81,60]的值,将较大值交换到当前节点。 - 得到新的数据序列为[81,80,30,40,60,90,100,10]。 4. 完成建堆过程。 最终得到的堆为[81,80,30,40,60,90,100,10]。这个堆是一个最大堆,其中每个节点的值都大于或等于它的子节点的值。通过建堆,我们将输入序列转化为了一个堆,这个堆可以用于进行堆排序等其他操作。

相关推荐

最新推荐

recommend-type

Unity代码实现序列帧动画播放器

Unity代码实现序列帧动画播放器 Unity代码实现序列帧动画播放器是 Unity 游戏引擎中的一种动画播放方式,通过编写代码来实现序列帧动画的播放。序列帧动画是一种常见的动画方式,它通过播放一系列的图像帧来生成...
recommend-type

Unity3D制作序列帧动画的方法

首先,选择要播放序列帧动画的Image,然后在Window下选择Animation,会弹出一个动画制动的界面,选择Create,进入动画编辑界面。在这个界面中,可以添加动画控制的属性,然后将美术提供的序列图拖入到动画帧面板里。...
recommend-type

python练习题 :用户任意输入10个整数到列表中,然后由大到小排列并输出。

输入10个整数并排序,可以先将输入的字符串转化为整数列表,再使用`sort()`方法;判断输入的数是正数、负数还是零,可以使用条件语句;实现特定的输出格式,通常涉及嵌套循环和条件判断;输出九九乘法表,可以使用两...
recommend-type

pytorch VGG11识别cifar10数据集(训练+预测单张输入图片操作)

在实现VGG11模型识别CIFAR-10数据集的过程中,我们首先需要定义VGG Block,这是一个包含多个卷积层、ReLU激活函数和最大池化层的序列。`vgg_block`函数接收三个参数:`num_convs`(卷积层的数量)、`in_channels`...
recommend-type

基于Json序列化和反序列化通用的封装完整代码

基于Json序列化和反序列化通用的封装完整代码是指使用JsonHelper类来实现Json序列化和反序列化的功能。该类提供了多种方法来实现Json序列化和反序列化,包括使用Newtonsoft.Json和System.Runtime.Serialization.Json...
recommend-type

Lombok 快速入门与注解详解

"Lombok是Java开发中的一款实用工具,它可以自动处理类中的getter、setter以及其他常见方法,简化代码编写,提高开发效率。通过在类或属性上使用特定的注解,Lombok能够帮助开发者避免编写重复的样板代码。本文将介绍如何在IDEA中安装Lombok以及常用注解的含义和用法。" 在Java编程中,Lombok库提供了一系列注解,用于自动化生成getter、setter、构造函数等方法,从而减少手动编写这些常见但重复的代码。Lombok的使用可以使得代码更加整洁,易于阅读和维护。在IDEA中安装Lombok非常简单,只需要打开设置,选择插件选项,搜索并安装Lombok插件,然后按照提示重启IDEA即可。 引入Lombok依赖后,我们可以在项目中的实体类上使用各种注解来实现所需功能。以下是一些常见的Lombok注解及其作用: 1. `@Data`:这个注解放在类上,会为类的所有非静态字段生成getter和setter方法,同时提供`equals()`, `canEqual()`, `hashCode()` 和 `toString()`方法。 2. `@Setter` 和 `@Getter`:分别用于为单个字段或整个类生成setter和getter方法。如果单独应用在字段上,只针对该字段生成;如果应用在类级别,那么类中所有字段都将生成对应的方法。 3. `@Slf4j`:在类上使用此注解,Lombok会为类创建一个名为"log"的日志记录器,通常是基于Logback或Log4j。这样就可以直接使用`log.info()`, `log.error()`等方法进行日志记录。 4. `@AllArgsConstructor`:在类上添加此注解,会自动生成包含所有字段的全参数构造函数。注意,这会导致默认无参构造函数的消失。 5. `@NoArgsConstructor`:这个注解在类上时,会生成一个无参数的构造函数。 6. `@EqualsAndHashCode`:使用此注解,Lombok会自动生成`equals()`和`hashCode()`方法,用于对象比较和哈希计算。 7. `@NonNull`:标记字段为非空,可以在编译时检查空值,防止出现NullPointerException。 8. `@Cleanup`:在资源管理中,如文件流或数据库连接,用于自动关闭资源。 9. `@ToString`:生成`toString()`方法,返回类实例的字符串表示,包含所有字段的值。 10. `@RequiredArgsConstructor`:为带有final或标注为@NonNull的字段生成带参数的构造函数。 11. `@Value`:类似于@Data,但默认为final字段,创建不可变对象,并且生成的构造函数是私有的。 12. `@SneakyThrows`:允许在没有try-catch块的情况下抛出受检查的异常。 13. `@Synchronized`:同步方法,确保同一时间只有一个线程可以执行该方法。 了解并熟练运用这些注解,可以极大地提高Java开发的效率,减少手动维护样板代码的时间,使开发者能够更加专注于业务逻辑。在团队开发中,合理使用Lombok也能提升代码的一致性和可读性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

决策树超参数调优:理论与实践相结合,打造高效模型

![决策树超参数调优:理论与实践相结合,打造高效模型](https://img-blog.csdnimg.cn/img_convert/3fa381f3dd67436067e7c8ee7c04475c.png) # 1. 决策树模型概述 决策树是一种基础而强大的机器学习模型,常用于分类和回归任务。它通过一系列的问题(特征)来拆分数据集,直到每个子集仅包含一个类别(分类)或者值(回归)。 ## 1.1 决策树的基本概念 在机器学习中,决策树通过节点分割的方式将数据集划分为更小的子集,每个节点代表了数据的决策点。通过从根节点到叶节点的路径,我们可以看到决策的顺序。 ## 1.2 决策树的构
recommend-type

python ID3决策树

ID3决策树是一种基于信息增益来选择特征进行分割的决策树算法。它是机器学习中用于分类的一种算法,由Ross Quinlan提出。ID3利用了信息论中的熵概念来度量样本集合的纯度,其核心思想是通过选取能够使数据集熵最小化的特征来进行决策树的构建。 在ID3算法中,熵的计算公式如下: \[ Entropy(S) = -\sum_{i=1}^{m} p_i \log_2 p_i \] 其中,\( S \) 是样本集合,\( m \) 是分类的数目,\( p_i \) 是选择第 \( i \) 个分类的概率。 信息增益的计算公式如下: \[ Gain(S, A) = Entropy(S) - \s
recommend-type

SpringSecurity实战:声明式安全控制框架解析

"SpringSecurity实战教程.txt" Spring Security是Java开发领域中广泛使用的安全框架,尤其在构建企业级应用时,它提供了强大的声明式安全访问控制功能。这个框架的设计理念是将安全性与业务逻辑分离,让开发者可以专注于核心业务的实现,而不用过于担忧安全细节。Spring Security的核心组件和机制使得它能够轻松地集成到基于Spring的应用中,利用Spring的IoC(控制反转)和DI(依赖注入)特性,以及AOP(面向切面编程)来实现灵活的安全策略。 1. **控制反转(IoC)和依赖注入(DI)**: Spring Security充分利用了Spring框架的IoC和DI特性,允许开发者通过配置来管理安全相关的对象。例如,你可以定义不同的认证和授权机制,并通过Spring的容器来管理这些组件,使它们在需要的时候被自动注入到应用中。 2. **面向切面编程(AOP)**: AOP是Spring Security实现声明式安全的关键。通过AOP,安全检查可以被编织到应用程序的各个切入点中,而无需在每个方法或类中显式添加安全代码。这包括了访问控制、会话管理、密码加密等功能,使得代码更加整洁,易于维护。 3. **认证(Authentication)**: Spring Security提供了多种认证机制,如基于用户名和密码的认证、OAuth2认证、OpenID Connect等。开发者可以通过自定义认证提供者来实现特定的认证流程,确保只有经过验证的用户才能访问受保护的资源。 4. **授权(Authorization)**: 授权在Spring Security中通过访问决策管理器(Access Decision Manager)和访问决策投票器(Access Decision Voter)来实现。你可以定义角色、权限和访问规则,以控制不同用户对资源的访问权限。 5. **URL过滤(Filter Security Interceptor)**: Spring Security通过一系列的过滤器来拦截HTTP请求,根据预定义的规则决定是否允许访问。例如,`HttpSessionAuthenticationStrategy`用于会话管理和防止会话劫持,`ChannelProcessingFilter`用于强制HTTPS连接等。 6. **表达式式访问控制(Expression-Based Access Control)**: Spring Security引入了Spring EL(表达式语言),允许在访问控制规则中使用复杂的逻辑表达式,如`hasRole('ROLE_ADMIN')`或`@Secured('IS_AUTHENTICATED_FULLY')`,使得授权更加灵活和精确。 7. **会话管理**: 它包括会话固定保护(Session Fixation Protection)、会话超时(Session Timeout)和并发会话控制(Concurrent Session Control),防止会话劫持和多点登录攻击。 8. **密码加密**: Spring Security支持多种密码加密算法,如BCrypt、PBKDF2和SCrypt,确保用户密码的安全存储。 9. **异常处理**: 自定义的异常处理机制允许开发者优雅地处理未授权和未认证的异常,提供友好的错误提示。 10. **集成其他Spring模块和第三方库**: Spring Security可以无缝集成Spring Boot、Spring MVC、Spring Data等,同时支持与CAS、OAuth2、OpenID Connect等身份验证协议的集成。 通过深入学习和实践Spring Security,开发者可以构建出健壮且易于维护的安全系统,为企业的数据和用户资产提供坚实的保障。提供的实战教程将帮助你更好地理解和运用这些概念,确保在实际项目中能够正确配置和使用Spring Security。