局部加权线性回归 c++算法实现

时间: 2023-05-15 14:04:12 浏览: 118
局部加权线性回归 c 算法是一种非参数回归算法。这个算法给数据点的加权系数赋值,然后用权值来更新回归系数值,从而使得模型更加贴合数据点的变化。算法的实现流程如下: 1.先选择一个平滑参数 tau。tau 控制了权重衰减的速率。如果 tau 设的很小,权重衰减之后会出现过拟合现象。反之,如果 tau 设的非常大,权重衰减的影响也会降到最低,算法的结果将不具有代表性。 2. 需要计算每个数据点到目标数据点 x0 的距离,然后利用距离计算出对应的权重。计算公式为 W(i,i) = exp(|Xi - X0|^2 / (-2tau^2)) 其中 W(i,i) 是一个加权系数矩阵,|Xi - X0|^2 是数据点 i 与目标数据点 x0 的距离平方,tau 是平滑参数。 3.根据权重矩阵 W 对回归系数进行更新。回归系数的更新方法和线性回归模型类似,通过最小二乘法的计算公式来更新回归系数值。回归系数的计算公式如下: w = (X^T W X)^(-1) X^T W Y 其中,w 是回归系数向量,X 是输入数据维度的矩阵,Y 是目标输出数据的向量。 4.最后,算法使用回归系数向量来计算目标点 x0 的预测值 y0。预测值的计算公式为 y0 = x0w 局部加权线性回归 c 算法不需要预设模型,从而避免了过拟合现象。这也是为什么这个算法在非线性数据的拟合过程中具有更好的性能。
相关问题

用C++实现线性回归方程的算法

### 回答1: 线性回归的目的是找到一条能尽量好地拟合数据的直线。其中,回归系数b和截距a是要求的参数。 线性回归的数学方程为: y = bx + a 其中,y是预测值,b是回归系数,x是自变量,a是截距。 算法流程如下: 1. 先求出所有数据的均值,分别记作 x̄ 和 ȳ。 2. 利用公式 b = Σ((x - x̄)(y - ȳ)) / Σ((x - x̄)^2) 求出回归系数b。 3. 利用公式 a = ȳ - b * x̄ 求出截距a。 算法实现的代码示例如下: #include <stdio.h> #include <stdlib.h> #include <math.h> #define N 100 int main() { int i; double x[N], y[N]; //存储自变量和因变量的数组 double x_mean = 0, y_mean = 0; //存储自变量和因变量的均值 double b, a; //存储回归系数和截距 //输入自变量和因变量的值 for (i = 0; i < N; i++) { scanf("%lf%lf", &x[i], &y[i]); x_mean += x[i]; y_mean += y[i]; } x_mean /= N; y_mean /= N; //计算回归系数b double numerator = 0, denominator = 0; //分子和分母 for (i = 0; i < N; i++) { numerator += (x[i] - x_mean) * (y[i] - y_mean); denominator += (x[i] - x_mean) * (x[i] - x_mean); } b = numerator / denominator; //计算截距 ### 回答2: 线性回归是一种用于建立自变量和因变量之间关系的成熟算法。通过使用C语言来实现线性回归方程的算法,我们需要以下步骤: 1. 导入所需的C库和头文件:我们需要包含stdio.h和math.h头文件,以便使用数学函数和输入输出函数。 2. 定义训练数据集:创建两个数组,一个用于存储自变量的值,另一个用于存储相应的因变量的值。 3. 计算平均值:使用循环遍历自变量数组,计算其平均值。 4. 计算方差和协方差:使用循环遍历自变量和因变量数组,计算它们之间的方差和协方差。 5. 计算回归系数:使用公式\( b = \frac{Cov(x, y)}{Var(x)} \)计算回归系数b。 6. 计算截距:使用公式\( a = \bar{y} - b\bar{x} \)计算回归方程的截距。 7. 输出回归方程:打印回归方程的系数和截距。 8. 进行预测:根据回归方程,使用用户提供的输入值进行预测。 9. 输出预测结果:打印预测值。 接下来,我将用C代码演示如何实现上述算法: ```c #include <stdio.h> #include <math.h> int main() { int n = 5; //数据集大小 double x[] = {1, 2, 3, 4, 5}; //自变量数组 double y[] = {2, 4, 6, 8, 10}; //因变量数组 //计算平均值 double x_mean = 0, y_mean = 0; for(int i = 0; i < n; i++){ x_mean += x[i]; y_mean += y[i]; } x_mean /= n; y_mean /= n; //计算方差和协方差 double var_x = 0, cov_xy = 0; for(int i = 0; i < n; i++){ var_x += pow(x[i] - x_mean, 2); cov_xy += (x[i] - x_mean) * (y[i] - y_mean); } var_x /= n; cov_xy /= n; //计算回归系数和截距 double b = cov_xy / var_x; double a = y_mean - b * x_mean; //输出回归方程 printf("回归方程: y = %.2fx + %.2f\n", b, a); //进行预测 double input = 6; double prediction = b * input + a; //输出预测结果 printf("预测值: %.2f\n", prediction); return 0; } ``` 以上就是使用C语言实现线性回归方程的算法的步骤和示例代码。 ### 回答3: 线性回归是一种用于建立变量之间线性关系的统计分析方法,用于预测因变量和自变量之间关系的强度和方向。我将用C语言来实现线性回归方程的算法。 首先,我们需要准备一组样本数据,包括自变量和因变量。假设我们有n个样本数据,自变量用X表示[x1, x2, ..., xn],因变量用Y表示[y1, y2, ..., yn]。 接下来,我们需要计算自变量和因变量的平均值,记为Xmean和Ymean。然后,计算自变量和因变量的标准差,分别记为Xstd和Ystd。 然后,我们需要计算自变量和因变量的协方差,记为CovXY。协方差可以通过以下公式计算: `CovXY = Σ((xi - Xmean)*(yi - Ymean)) / (n-1)` 接着,我们可以计算线性回归方程的斜率b和截距a。斜率可以通过以下公式计算: `b = CovXY / Xstd^2` 截距可以通过以下公式计算: `a = Ymean - b * Xmean` 最后,我们可以得到线性回归方程的表达式: `Y = a + b * X` 以上就是用C语言实现线性回归方程的算法。通过计算自变量和因变量的平均值、标准差和协方差,我们可以得到线性回归方程的斜率和截距,从而进行预测和分析。

c++实现线性回归

以下是使用C++实现简单线性回归的示例代码: ```cpp #include <iostream> #include <vector> #include <numeric> #include <cmath> using namespace std; // 计算均值 double mean(const vector<double>& v) { double sum = accumulate(v.begin(), v.end(), 0.0); return sum / v.size(); } // 计算方差 double variance(const vector<double>& v) { double m = mean(v); double sum = 0.0; for (double x : v) { sum += pow(x - m, 2); } return sum / (v.size() - 1); } // 计算协方差 double covariance(const vector<double>& x, const vector<double>& y) { double x_mean = mean(x); double y_mean = mean(y); double sum = 0.0; for (int i = 0; i < x.size(); ++i) { sum += (x[i] - x_mean) * (y[i] - y_mean); } return sum / (x.size() - 1); } // 计算斜率和截距 void linear_regression(const vector<double>& x, const vector<double>& y, double& slope, double& intercept) { slope = covariance(x, y) / variance(x); intercept = mean(y) - slope * mean(x); } int main() { vector<double> x {1, 2, 3, 4, 5}; vector<double> y {1, 3, 2, 3, 5}; double slope, intercept; linear_regression(x, y, slope, intercept); cout << "Slope: " << slope << endl; cout << "Intercept: " << intercept << endl; return 0; } ``` 这里我们使用了 `vector` 存储数据,并使用 `accumulate`、`pow` 等函数计算数学运算。`mean` 函数用于计算均值,`variance` 函数用于计算方差,`covariance` 函数用于计算协方差,`linear_regression` 函数用于计算斜率和截距,从而得到线性回归模型。

相关推荐

最新推荐

recommend-type

C++实现分水岭算法(Watershed Algorithm)

主要为大家详细介绍了C++实现分水岭算法Watershed Algorithm,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

用C++实现DBSCAN聚类算法

本篇文章是对使用C++实现DBSCAN聚类算法的方法进行了详细的分析介绍,需要的朋友参考下
recommend-type

c++代码实现tea加密算法的实例详解

主要介绍了c++代码实现tea加密算法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
recommend-type

使用C++实现全排列算法的方法详解

本篇文章是对使用C++实现全排列算法的方法进行了详细的分析介绍,需要的朋友参考下
recommend-type

C++递归算法实例代码

主要介绍了C++递归算法实例代码,还是比较不错的,运用了递归算法解决相关问题,这里分享给大家,需要的朋友可以参考下。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。