train_dataset = MyDataset(train_data) test_dataset = MyDataset(test_data) train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False) model = GoogleNet(num_classes=10) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) for epoch in range(10): for i, (images, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Epoch {}, Test Accuracy: {} %'.format(epoch+1, 100 * correct / total))使用的软件包都有哪些

时间: 2023-06-19 21:09:43 浏览: 46
这段代码使用了以下软件包: - PyTorch:用于深度学习模型的构建和训练。 - torch.utils.data:PyTorch中的数据加载实用程序,用于加载和处理数据集。 - torch.optim:PyTorch中的优化器,用于优化模型参数。 - torch.nn:PyTorch中的神经网络模块,用于定义和构建神经网络模型。 - nn.CrossEntropyLoss:PyTorch中的损失函数,用于计算分类问题的交叉熵损失。 - torch.max:PyTorch中的函数,用于计算张量中的最大值。 - DataLoader:PyTorch中的数据加载器,用于在训练和测试期间批量加载数据。
相关问题

train_dataset = MyDataset (x_train, y_train) train loader = Data.Dataloader (train dataset, batch size=16, shuffle=True)

这段代码是在使用PyTorch框架中构建训练数据的DataLoader。 首先,我们定义了一个自定义的数据集类`MyDataset`,它需要实现`__getitem__`和`__len__`方法。这里传入的参数`x_train`和`y_train`是我们训练数据的特征和标签。 接着,我们使用`DataLoader`类来进行批量读取数据。其中,第一个参数传入我们定义的自定义数据集`train_dataset`,第二个参数是一个批次的大小(这里是16),第三个参数`shuffle`表示是否打乱数据顺序。 具体而言,`DataLoader`会在每次迭代中自动读取相应大小的数据批次,并返回一个元组`(batch_inputs, batch_labels)`,分别对应一个批次的特征和标签。我们可以通过循环遍历`train_loader`来遍历整个训练数据集。

train_set = os.path.join('data/PA100k/data1') train_loader = DataLoader(train_set, batch_size=32, shuffle=True)

在这段代码中,您使用了 `os.path.join('data/PA100k/data1')` 来指定训练集的路径,然后将其传递给 `DataLoader`。然而,`DataLoader` 并不是直接接受路径作为输入的,而是需要一个数据集对象作为输入。因此,您需要先将数据集加载到内存中,并将其转换为 PyTorch 的数据集对象,然后再将其传递给 `DataLoader`。 假设您的数据集是一个包含图片和标签的文件夹,您可以使用以下代码将其转换为 PyTorch 的数据集对象: ```python import os from PIL import Image from torch.utils.data import Dataset class MyDataset(Dataset): def __init__(self, root_dir): self.root_dir = root_dir self.samples = [] for filename in os.listdir(root_dir): if filename.endswith('.jpg'): image_path = os.path.join(root_dir, filename) label_path = os.path.join(root_dir, filename.replace('.jpg', '.txt')) label = self.read_label(label_path) self.samples.append((image_path, label)) def __len__(self): return len(self.samples) def __getitem__(self, index): image_path, label = self.samples[index] image = Image.open(image_path).convert('RGB') return image, label def read_label(self, label_path): with open(label_path, 'r') as f: label = [int(x) for x in f.readline().strip().split()] return label ``` 在这个示例中,我们定义了一个自定义数据集类 `MyDataset`,它从指定的文件夹中加载图片和标签,并将其作为元组 `(image, label)` 返回,其中 `image` 是 PIL 图像对象,`label` 是一个标签列表。在 `__init__` 方法中,我们遍历文件夹中的所有 `.jpg` 文件,并将每个文件的路径和对应的标签保存到 `self.samples` 列表中。在 `__getitem__` 方法中,我们使用 PIL 库加载图片,并将其转换为 PyTorch 的张量。在 `read_label` 方法中,我们读取标签文件,并将标签转换为一个整数列表。 然后,您可以使用以下代码将数据集对象传递给 `DataLoader`: ```python train_set = MyDataset('data/PA100k/data1') train_loader = DataLoader(train_set, batch_size=32, shuffle=True) ``` 在这个示例中,我们使用 `MyDataset('data/PA100k/data1')` 创建了一个数据集对象,并将其传递给 `DataLoader`。`batch_size` 参数指定了每个批次中包含的样本数量,`shuffle` 参数指定了是否在每个 epoch 中随机打乱数据。 希望这个示例能够帮助您将数据集转换为 PyTorch 的数据集对象,并正确地使用 `DataLoader` 加载数据。如果您还有其他问题,请随时提出。

相关推荐

def train(model, train_loader, criterion, optimizer): model.train() train_loss = 0.0 train_acc = 0.0 for i, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc.double() / len(train_loader.dataset) return train_loss, train_acc def test(model, verify_loader, criterion): model.eval() test_loss = 0.0 test_acc = 0.0 with torch.no_grad(): for i, (inputs, labels) in enumerate(test_loader): outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) test_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) test_acc += torch.sum(preds == labels.data) test_loss = test_loss / len(test_loader.dataset) test_acc = test_acc.double() / len(test_loader.dataset) return test_loss, test_acc # Instantiate the model model = CNN() # Define the loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # Instantiate the data loaders train_dataset = MyDataset1('1MATRICE') train_loader = DataLoader(train_dataset, batch_size=5, shuffle=True) test_dataset = MyDataset2('2MATRICE') test_loader = DataLoader(test_dataset, batch_size=5, shuffle=False) train_losses, train_accs, test_losses, test_accs = [], [], [], [] for epoch in range(500): train_loss, train_acc = train(model, train_loader, criterion, optimizer) test_loss, test_acc = test(model, test_loader, criterion) train_losses.append(train_loss) train_accs.append(train_acc) test_losses.append(test_loss) test_accs.append(test_acc) print('Epoch: {} Train Loss: {:.4f} Train Acc: {:.4f} Test Loss: {:.4f} Test Acc: {:.4f}'.format( epoch, train_loss, train_acc, test_loss, test_acc))

import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, Dataset class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, stride=1, padding=1) self.relu = nn.ReLU() self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(32 * 14 * 14, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.pool(x) x = x.view(-1, 32 * 14 * 14) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return x class MyDataset(Dataset): def __init__(self, data, target): self.data = data self.target = target def __getitem__(self, index): x = self.data[index] y = self.target[index] return x, y def __len__(self): return len(self.data) # 定义一些超参数 batch_size = 32 learning_rate = 0.001 epochs = 10 # 加载数据集 train_data = torch.randn(1000, 1, 28, 28) print(train_data) train_target = torch.randint(0, 10, (1000,)) print(train_target) train_dataset = MyDataset(train_data, train_target) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) # 构建模型 model = ConvNet() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(epochs): for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # 保存模型 # torch.save(model.state_dict(), 'convnet.pth')

return data, label def __len__(self): return len(self.data)train_dataset = MyDataset(train, y[:split_boundary].values, time_steps, output_steps, target_index)test_ds = MyDataset(test, y[split_boundary:].values, time_steps, output_steps, target_index)class MyLSTMModel(nn.Module): def __init__(self): super(MyLSTMModel, self).__init__() self.rnn = nn.LSTM(input_dim, 16, 1, batch_first=True) self.flatten = nn.Flatten() self.fc1 = nn.Linear(16 * time_steps, 120) self.relu = nn.PReLU() self.fc2 = nn.Linear(120, output_steps) def forward(self, input): out, (h, c) = self.rnn(input) out = self.flatten(out) out = self.fc1(out) out = self.relu(out) out = self.fc2(out) return outepoch_num = 50batch_size = 128learning_rate = 0.001def train(): print('训练开始') model = MyLSTMModel() model.train() opt = optim.Adam(model.parameters(), lr=learning_rate) mse_loss = nn.MSELoss() data_reader = DataLoader(train_dataset, batch_size=batch_size, drop_last=True) history_loss = [] iter_epoch = [] for epoch in range(epoch_num): for data, label in data_reader: # 验证数据和标签的形状是否满足期望,如果不满足,则跳过这个批次 if data.shape[0] != batch_size or label.shape[0] != batch_size: continue train_ds = data.float() train_lb = label.float() out = model(train_ds) avg_loss = mse_loss(out, train_lb) avg_loss.backward() opt.step() opt.zero_grad() print('epoch {}, loss {}'.format(epoch, avg_loss.item())) iter_epoch.append(epoch) history_loss.append(avg_loss.item()) plt.plot(iter_epoch, history_loss, label='loss') plt.legend() plt.xlabel('iters') plt.ylabel('Loss') plt.show() torch.save(model.state_dict(), 'model_1')train()param_dict = torch.load('model_1')model = MyLSTMModel()model.load_state_dict(param_dict)model.eval()data_reader1 = DataLoader(test_ds, batch_size=batch_size, drop_last=True)res = []res1 = []# 在模型预测时,label 的处理for data, label in data_reader1: data = data.float() label = label.float() out = model(data) res.extend(out.detach().numpy().reshape(data.shape[0]).tolist()) res1.extend(label.numpy().tolist()) # 由于预测一步,所以无需 reshape,直接转为 list 即可title = "t321"plt.title(title, fontsize=24)plt.xlabel("time", fontsize=14)plt.ylabel("irr", fontsize=14)plt.plot(res, color='g', label='predict')plt.plot(res1, color='red', label='real')plt.legend()plt.grid()plt.show()的运算过程

最新推荐

recommend-type

基于SSM+JSP的企业人事管理信息系统毕业设计(源码+录像+说明).rar

基于SSM+JSP的企业人事管理信息系统毕业设计(源码+录像+说明).rar 【项目技术】 开发语言:Java 框架:ssm+jsp 架构:B/S 数据库:mysql 【演示视频-编号:420】 https://pan.quark.cn/s/b3a97032fae7 【实现功能】 实现了员工基础数据的管理,考勤管理,福利管理,薪资管理,奖惩管理,考核管理,培训管理,招聘管理,公告管理,基础数据管理等功能。
recommend-type

node-v6.12.0-linux-ppc64le.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

node-v6.8.0-linux-ppc64le.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

机器学习怎么将excel转为csv文件

机器学习是一种利用计算机算法和统计数据的方法来训练计算机来进行自动学习的科学,无法直接将excel文件转为csv文件。但是可以使用Python编程语言来读取Excel文件内容并将其保存为CSV文件。您可以使用Pandas库来读取Excel文件,并使用to_csv()函数将其保存为CSV格式。以下是代码示例: ```python import pandas as pd # 读取 Excel 文件 excel_data = pd.read_excel('example.xlsx') # 将数据保存为 CSV 文件 excel_data.to_csv('example.csv', index=
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这