梯度下降法损失函数定义代码

时间: 2023-08-06 08:25:29 浏览: 90
以下是使用梯度下降法训练神经网络时,定义损失函数的代码示例: ```python import numpy as np def loss_function(y_true, y_pred): """ 计算损失函数 :param y_true: 真实值 :param y_pred: 预测值 :return: 损失值 """ # 计算交叉熵损失 loss = -np.mean(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred)) return loss ``` 在上述代码中,我们使用交叉熵损失函数来定义损失值。其中,y_true是真实值,y_pred是预测值,np.log是自然对数函数,*表示元素相乘,+表示元素相加。最后,用np.mean计算平均损失值。
相关问题

随机梯度下降法优化beale函数代码

以下是使用随机梯度下降法优化Beale函数的Python代码: ```python import numpy as np def beale(x): """ Beale函数:f(x, y) = (1.5 - x + x*y)**2 + (2.25 - x + x*y**2)**2 + (2.625 - x + x*y**3)**2 """ return (1.5 - x[0] + x[0]*x[1])**2 + (2.25 - x[0] + x[0]*x[1]**2)**2 + (2.625 - x[0] + x[0]*x[1]**3)**2 def beale_gradient(x): """ Beale函数的梯度向量 """ grad = np.zeros_like(x) grad[0] = 2*(x[0]*x[1] - x[0] + 1.5)*(x[1]**3) + 2*(x[0]*x[1]**2 - x[0] + 2.25)*(x[1]**2) + 2*(x[0]*x[1]**3 - x[0] + 2.625)*x[1] grad[1] = 2*(x[0]*x[1] - x[0] + 1.5)*(x[0]) + 2*(x[0]*x[1]**2 - x[0] + 2.25)*(2*x[0]*x[1]) + 2*(x[0]*x[1]**3 - x[0] + 2.625)*(3*x[0]*x[1]**2) return grad def sgd_beale(x0, learning_rate=0.001, max_iter=10000, tol=1e-6): """ 使用随机梯度下降法优化Beale函数 """ x = x0.copy() for i in range(max_iter): # 随机选择一个方向 direction = np.random.randn(2) # 计算梯度 grad = beale_gradient(x) # 更新参数 x -= learning_rate * grad * direction # 检查收敛性 if np.linalg.norm(grad) < tol: print("SGD converged in {} iterations.".format(i+1)) break return x # 测试 np.random.seed(0) x0 = np.array([1.0, 1.0]) x_opt = sgd_beale(x0) print("Optimized solution: x = {:.6f}, y = {:.6f}, f(x, y) = {:.6f}".format(x_opt[0], x_opt[1], beale(x_opt))) ``` 在上面的代码中,我们定义了Beale函数及其梯度向量,然后使用随机梯度下降法优化这个函数。在每次迭代中,我们随机选择一个方向(即随机生成一个二维向量),计算梯度,并更新参数。我们使用欧几里得范数来检查梯度是否已经足够小,如果是,则认为算法已经收敛。最后,我们输出优化后的解及其函数值。

matlab中梯度下降法求函数极值

在Matlab中,使用梯度下降法求函数的极值可以分为以下几个步骤: 1. 定义目标函数:首先,在Matlab中定义目标函数。为了简单起见,我们假设目标函数为一个简单的二次函数,例如:f(x) = x^2 + 2x + 1。 2. 计算梯度:在定义目标函数后,使用Matlab的符号计算功能获取目标函数的梯度。对于上述的二次函数,梯度可以通过调用gradient()函数来计算。 3. 初始化参数:在使用梯度下降法时,需要初始化参数。例如,假设初始参数为x0 = 0。 4. 设置学习率:学习率决定了参数更新的步长,即每一次迭代时参数的变化程度。可以根据实际情况手动设定合适的学习率,例如lr = 0.1。 5. 迭代更新参数:通过使用求得的梯度和设定的学习率,根据梯度下降法的更新规则进行迭代更新参数,直到达到迭代次数或者满足停止条件。更新参数的规则为:x = x - lr * gradient。 6. 输出结果:最后,输出得到的参数值和对应的目标函数值,即对于上述例子,输出最终的x值以及计算得到的f(x)值。 需要注意的是,上述步骤是简化的示例,实际情况中可能需要进行更复杂的操作和设置,例如设定合适的停止条件、选择合适的学习率和迭代次数等。同时,在使用梯度下降法时,也需要对目标函数的性质和参数的选择进行充分的理解和思考。
阅读全文

相关推荐

最新推荐

recommend-type

Python实现多元线性回归方程梯度下降法与求函数极值

上述代码展示了如何绘制三维曲面图以及如何用Python实现梯度下降法求解函数极值。`f2` 函数定义了一个二次函数,`X1` 和 `X2` 分别是自变量的范围,`Y` 是根据 `f2` 计算出的因变量值。接着,代码创建了一个三维图形...
recommend-type

Python编程实现线性回归和批量梯度下降法代码实例

2. **梯度下降法**:梯度下降是一种优化算法,用于找到函数的局部最小值。在机器学习中,它常用于拟合模型参数,如线性回归中的θ。批量梯度下降法(Batch Gradient Descent)是其中一种变体,它在每次迭代时使用...
recommend-type

基于Python共轭梯度法与最速下降法之间的对比

CG_FR和CG_PRP函数分别对应共轭梯度法的FR格式和PRP格式实现,而SD函数则是最速下降法的实现。在主程序中,可以设置不同的矩阵G和向量b来模拟二次函数,并通过调用这些函数进行求解。 在实际应用中,选择共轭梯度法...
recommend-type

最优化算法python实现篇(4)——无约束多维极值(梯度下降法)

线性回归的损失函数是凸函数,因此梯度下降法常被用于解决线性回归问题。 **Python实现** 在Python中,我们可以创建一个CyrusGradientDescent类来实现梯度下降法。关键参数包括: - `func`:优化的目标函数。 - `...
recommend-type

ssm-vue-校园代购服务订单管理系统-源码工程-32页从零开始全套图文详解-34页参考论文-27页参考答辩-全套开发环境工具、文档模板、电子教程、视频教学资源.zip

资源说明: 1:csdn平台资源详情页的文档预览若发现'异常',属平台多文档混合解析和叠加展示风格,请放心使用。 2:32页图文详解文档(从零开始项目全套环境工具安装搭建调试运行部署,保姆级图文详解)。 3:34页范例参考毕业论文,万字长文,word文档,支持二次编辑。 4:27页范例参考答辩ppt,pptx格式,支持二次编辑。 5:工具环境、ppt参考模板、相关教程资源分享。 6:资源项目源码均已通过严格测试验证,保证能够正常运行,本项目仅用作交流学习参考,请切勿用于商业用途。 7:项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通。 内容概要: 本系统基于 B/S 网络结构,在IDEA中开发。服务端用 Java 并借 ssm 框架(Spring+SpringMVC+MyBatis)搭建后台。前台采用支持 HTML5 的 VUE 框架。用 MySQL 存储数据,可靠性强。 能学到什么: 学会用ssm搭建后台,提升效率、专注业务。学习 VUE 框架构建交互界面、前后端数据交互、MySQL管理数据、从零开始环境搭建、调试、运行、打包、部署流程。
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。