self.layers_1 = torch.nn.Sequential(*layers[:3])
时间: 2024-05-31 20:12:48 浏览: 174
这行代码是创建了一个名为`layers_1`的`Sequential`层,其中包含了`layers`中的前三个层。`Sequential`层是一种顺序连接的层,它可以将多个层按照顺序连接在一起。在这里,我们使用`*`操作符将`layers[:3]`中的前三个层作为参数传递给`Sequential`层的构造函数,从而创建了`layers_1`。具体来说,`layers[:3]`是一个包含了前三个层的列表,`*`操作符将列表中的元素拆分成单个的参数,然后将这些参数传递给`Sequential`层的构造函数。最终,`layers_1`包含了前三个层,并且这些层按照顺序连接在一起。
相关问题
features_list = list(vgg19.features.children()) self.conv2_2 = torch.nn.Sequential(*features_list[:13]) self.conv3_4 = torch.nn.Sequential(*features_list[13:26]) self.conv4_4 = torch.nn.Sequential(*features_list[26: 39]) self.conv5_4 = torch.nn.Sequential(*features_list[39:-1]) self.tail_layer = features_list[-1] self.fc_layers = list(vgg19.classifier.children())[:-2] self.fc_layers = torch.nn.Sequential(*list(self.fc_layers)) self.extract_0 = torch.nn.Sequential( torch.nn.MaxPool2d(kernel_size=8, stride=8), torch.nn.Conv2d(128, self.k, kernel_size=1, stride=1) ) self.extract_1 = torch.nn.Sequential( torch.nn.MaxPool2d(kernel_size=4, stride=4), torch.nn.Conv2d(256, self.k, kernel_size=1, stride=1) )self.extract_2 = torch.nn.Sequential( torch.nn.MaxPool2d(kernel_size=2, stride=2), torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1) ) self.extract_3 = torch.nn.Sequential( torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1) ) self.fc0 = torch.nn.Linear(196, 1, bias=True) self.fc1 = torch.nn.Linear(196, 1, bias=True) self.fc2 = torch.nn.Linear(196, 1, bias=True) self.fc3 = torch.nn.Linear(196, 1, bias=True) self.fc4 = torch.nn.Linear(4096, 2 * k, bias=True) self.bn1 = torch.nn.BatchNorm1d(k) self.bn2 = torch.nn.BatchNorm1d(k) weight_init(self.fc0, self.fc1, self.fc2, self.fc3, self.fc4)
这段代码定义了一个名为 VGG19Encoder 的神经网络模型。它使用了预训练的 VGG19 模型的前四个卷积层和最后一个全连接层作为特征提取器,其中前四个卷积层被分别用于提取不同层级的特征。然后,通过几个额外的卷积层和全连接层将提取的特征转换为对输入图像中物体类别的预测。其中,提取的特征被分别送入四个全连接层中进行分类。
具体来说,代码中的各个部分的功能如下:
- `features_list = list(vgg19.features.children())`:获取 VGG19 模型的所有卷积层。
- `self.conv2_2 = torch.nn.Sequential(*features_list[:13])`:将前 13 层卷积层作为 conv2_2 层。
- `self.conv3_4 = torch.nn.Sequential(*features_list[13:26])`:将第 14 层到第 26 层卷积层作为 conv3_4 层。
- `self.conv4_4 = torch.nn.Sequential(*features_list[26: 39])`:将第 27 层到第 39 层卷积层作为 conv4_4 层。
- `self.conv5_4 = torch.nn.Sequential(*features_list[39:-1])`:将第 40 层到倒数第二层卷积层作为 conv5_4 层。
- `self.tail_layer = features_list[-1]`:将最后一层卷积层作为尾部层。
- `self.fc_layers = list(vgg19.classifier.children())[:-2]`:获取 VGG19 模型的所有全连接层,但不包括最后两层。
- `self.fc_layers = torch.nn.Sequential(*list(self.fc_layers))`:将所有全连接层组成一个新的连续的全连接层。
- `self.extract_0 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=8, stride=8), torch.nn.Conv2d(128, self.k, kernel_size=1, stride=1))`:将 conv2_2 层的输出进行最大池化和卷积操作,以提取更高级别的特征。
- `self.extract_1 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=4, stride=4), torch.nn.Conv2d(256, self.k, kernel_size=1, stride=1))`:将 conv3_4 层的输出进行最大池化和卷积操作,以提取更高级别的特征。
- `self.extract_2 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=2, stride=2), torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1))`:将 conv4_4 层的输出进行最大池化和卷积操作,以提取更高级别的特征。
- `self.extract_3 = torch.nn.Sequential(torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1))`:将 conv5_4 层的输出进行卷积操作,以提取更高级别的特征。
- `self.fc0 = torch.nn.Linear(196, 1, bias=True)`:定义一个输入为 196 的全连接层,用于分类。
- `self.fc1 = torch.nn.Linear(196, 1, bias=True)`:定义第二个输入为 196 的全连接层,用于分类。
- `self.fc2 = torch.nn.Linear(196, 1, bias=True)`:定义第三个输入为 196 的全连接层,用于分类。
- `self.fc3 = torch.nn.Linear(196, 1, bias=True)`:定义第四个输入为 196 的全连接层,用于分类。
- `self.fc4 = torch.nn.Linear(4096, 2 * k, bias=True)`:定义一个输入为 4096 的全连接层,用于分类。
- `self.bn1 = torch.nn.BatchNorm1d(k)`:定义一个 Batch Normalization 层,用于归一化数据。
- `self.bn2 = torch.nn.BatchNorm1d(k)`:定义第二个 Batch Normalization 层,用于归一化数据。
- `weight_init(self.fc0, self.fc1, self.fc2, self.fc3, self.fc4)`:对所有全连接层进行权重初始化,以提高模型的性能。
from collections import OrderedDict import torch import torch.nn.functional as F import torchvision from torch import nn import models.vgg_ as models class BackboneBase_VGG(nn.Module): def __init__(self, backbone: nn.Module, num_channels: int, name: str, return_interm_layers: bool): super().__init__() features = list(backbone.features.children()) if return_interm_layers: if name == 'vgg16_bn': self.body1 = nn.Sequential(*features[:13]) self.body2 = nn.Sequential(*features[13:23]) self.body3 = nn.Sequential(*features[23:33]) self.body4 = nn.Sequential(*features[33:43]) else: self.body1 = nn.Sequential(*features[:9]) self.body2 = nn.Sequential(*features[9:16]) self.body3 = nn.Sequential(*features[16:23]) self.body4 = nn.Sequential(*features[23:30]) else: if name == 'vgg16_bn': self.body = nn.Sequential(*features[:44]) # 16x down-sample elif name == 'vgg16': self.body = nn.Sequential(*features[:30]) # 16x down-sample self.num_channels = num_channels self.return_interm_layers = return_interm_layers def forward(self, tensor_list): out = [] if self.return_interm_layers: xs = tensor_list for _, layer in enumerate([self.body1, self.body2, self.body3, self.body4]): xs = layer(xs) out.append(xs) else: xs = self.body(tensor_list) out.append(xs) return out class Backbone_VGG(BackboneBase_VGG): """ResNet backbone with frozen BatchNorm.""" def __init__(self, name: str, return_interm_layers: bool): if name == 'vgg16_bn': backbone = models.vgg16_bn(pretrained=True) elif name == 'vgg16': backbone = models.vgg16(pretrained=True) num_channels = 256 super().__init__(backbone, num_channels, name, return_interm_layers) def build_backbone(args): backbone = Backbone_VGG(args.backbone, True) return backbone if __name__ == '__main__': Backbone_VGG('vgg16', True)
这段代码是一个基于VGG的神经网络模型的定义,主要用于特征提取。其中包括两个类:`BackboneBase_VGG`和`Backbone_VGG`以及一个函数`build_backbone`。
`BackboneBase_VGG`类是VGG的基础类,用于构建VGG神经网络模型。它的初始化函数接受四个参数:`backbone`,`num_channels`,`name`和`return_interm_layers`,其中`backbone`表示VGG的主干网络,`num_channels`表示输出的通道数,`name`表示VGG的名称,`return_interm_layers`表示是否返回中间层的输出。
`Backbone_VGG`类继承自`BackboneBase_VGG`类,主要用于构建一个冻结BatchNorm的VGG神经网络模型。它的初始化函数接受两个参数:`name`和`return_interm_layers`,其中`name`表示VGG的名称,`return_interm_layers`表示是否返回中间层的输出。这个类的主要作用是将`BackboneBase_VGG`类中的属性和方法进行实例化,然后通过调用父类的`__init__`方法进行初始化。
`build_backbone`函数是用于构建VGG神经网络模型的函数,它接受一个参数`args`,其中包含了VGG神经网络模型的一些参数。在这个函数中,会调用`Backbone_VGG`类来构建一个VGG神经网络模型,并将其返回。
最后,在`if __name__ == '__main__':`中,会创建一个`Backbone_VGG`类的实例对象,并传入参数`'vgg16'`和`True`进行初始化。
阅读全文