gpio_init.GPIO_Speed = GPIO_Speed_100MHz

时间: 2023-08-02 08:11:47 浏览: 43
这段代码的作用是设置gpio_init结构体变量的成员GPIO_Speed为GPIO_Speed_100MHz,即将GPIO端口的输出速度设置为100MHz。在GPIO输出数据时,输出速度也会影响到信号的稳定性和传输距离,因此需要根据具体的应用场景来选择合适的输出速度。在这个例子中,它将一个叫做serial_config->use_485_pin的GPIO端口的输出速度设置为100MHz,以便后续使用该GPIO端口输出数据。
相关问题

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; 什么意思

引用\[1\]中的代码是一个按键初始化函数,其中GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;这一行代码是设置GPIO的速度为100MHz。在STM32中,GPIO的速度可以设置为不同的值,用于控制IO口的输出速度。速度越高,IO口的切换速度越快。GPIO_Speed_100MHz表示将IO口的速度设置为100MHz。 #### 引用[.reference_title] - *1* *2* *3* [ 1 // 使能对应的 GPIO 时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10;//LED 对应引脚 2 /...](https://blog.csdn.net/weixin_39963174/article/details/114489357)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

将这一段配置改写成HAL库语句 GPIO_InitTypeDef GPIO_InitStructure ; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD|RCC_AHB1Periph_GPIOE, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0| GPIO_Pin_1| GPIO_Pin_2| GPIO_Pin_3| GPIO_Pin_4| GPIO_Pin_5| GPIO_Pin_6| GPIO_Pin_7| GPIO_Pin_8| GPIO_Pin_9| GPIO_Pin_10| GPIO_Pin_11| GPIO_Pin_12; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_Mode =GPIO_Mode_IN; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(GPIOD ,&GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_Mode =GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(GPIOE ,&GPIO_InitStructure);

使用 HAL 库来配置上述代码,你可以将其改写为以下形式: ```c GPIO_InitTypeDef GPIO_InitStructure; /* 使能 GPIOD 和 GPIOE 的时钟 */ __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOE_CLK_ENABLE(); /* 配置 GPIOD */ GPIO_InitStructure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12; GPIO_InitStructure.Mode = GPIO_MODE_INPUT; GPIO_InitStructure.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOD, &GPIO_InitStructure); /* 配置 GPIOE */ GPIO_InitStructure.Pin = GPIO_PIN_7; GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOE, &GPIO_InitStructure); ``` 在这个例子中,我们首先使用 `__HAL_RCC_GPIOx_CLK_ENABLE()` 函数使能 GPIOD 和 GPIOE 的时钟。然后,我们定义了一个名为 `GPIO_InitStructure` 的结构体变量,用于配置 GPIOD 和 GPIOE 的引脚。我们分别对 GPIOD 和 GPIOE 的引脚、模式、上拉/下拉和速度进行赋值。最后,通过调用 `HAL_GPIO_Init()` 函数来进行引脚的初始化,传入相应的 GPIO 口和结构体变量的指针作为参数。

相关推荐

GPIO_InitTypeDef GPIO_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOH, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP ; GPIO_Init(GPIOH, &GPIO_InitStructure); GPIO_PinAFConfig(GPIOH, GPIO_PinSource12, GPIO_AF_TIM5); } { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; uint32_t uiTIMxCLK; uint16_t usPrescaler; uint16_t usPeriod; uiTIMxCLK = SystemCoreClock / 2; if (_ulFreq < 3000) { usPrescaler = 100 - 1; /* 分频比 = 10 / usPeriod = (uiTIMxCLK / 100) / _ulFreq - 1; / 自动重装的值 / } else / 大于4K的频率,无需分频 / { usPrescaler = 0; / 分频比 = 1 / usPeriod = uiTIMxCLK / _ulFreq - 1; / 自动重装的值 / } TIM_TimeBaseStructure.TIM_Period = usPeriod; TIM_TimeBaseStructure.TIM_Prescaler = usPrescaler; TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM5, &TIM_TimeBaseStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = 4; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; TIM_OC3Init(TIM5, &TIM_OCInitStructure); TIM_OC3PreloadConfig(TIM5, TIM_OCPreload_Enable); TIM_ARRPreloadConfig(TIM5, ENABLE); TIM_Cmd(TIM5, ENABLE); }配置有问题吗

void TIM4_PWM_Init(u32 arr,u32 psc) { //此部分需手动修改IO口设置 GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM12,ENABLE); //TIM14时钟使能 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE); //使能PORTF时钟 GPIO_PinAFConfig(GPIOB,GPIO_PinSource14,GPIO_AF_TIM12); //GPIOF9复用为定时器12 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_14; //GPIOF9 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; //复用功能 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; //速度100MHz GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; //推挽复用输出 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; //上拉 GPIO_Init(GPIOB,&GPIO_InitStructure); //初始化PF9 TIM_TimeBaseStructure.TIM_Prescaler=psc; //定时器分频 TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式 TIM_TimeBaseStructure.TIM_Period=arr; //自动重装载值 TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1; TIM_TimeBaseInit(TIM12,&TIM_TimeBaseStructure);//初始化定时器14 //初始化TIM14 Channel1 PWM模式 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式 PWM输出高电平1模式靠左还是2模式靠右 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性 High输出高电平 Low 反转 比较结果是输出高电平还是低电平 TIM_OC1Init(TIM12, &TIM_OCInitStructure); //根据T指定的参数初始化外设TIM12 OC1 TIM_OC1PreloadConfig(TIM12, TIM_OCPreload_Enable); //使能TIM12在CCR1上的预装载寄存器 TIM_ARRPreloadConfig(TIM12,ENABLE);//ARPE使能 TIM_Cmd(TIM12, ENABLE); //使能TIM14 什么意思 }

最新推荐

recommend-type

node-v0.11.6-sunos-x86.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

Windows 运行Python脚本

要在 Windows 上运行 Python 脚本,你需要先安装 Python。可以从官网下载 Python 安装包并按照提示进行安装。安装完成后,就可以在命令行中输入 `python` 命令,进入 Python 解释器环境。 接着,你可以编写 Python 脚本,保存为 `.py` 后缀的文件。在命令行中进入脚本所在的目录,输入 `python script.py` 命令来运行脚本。其中 `script.py` 是你的脚本文件名。 如果你想在 Windows 上运行一个 Python 程序,但不想打开命令行窗口,可以将脚本文件拖动到 Python 可执行文件 `python.exe` 上,
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。