给我一个计算两个多边形IOU的代码,用C++。
时间: 2023-11-28 13:47:43 浏览: 156
python实现交并比IOU教程
以下是一个计算两个多边形IOU的C++代码,假设多边形的顶点坐标已知:
```c++
#include <iostream>
#include <vector>
using namespace std;
struct Point {
double x, y;
};
// 计算多边形面积
double polygonArea(const vector<Point>& polygon) {
double area = 0;
int n = polygon.size();
for (int i = 0; i < n; i++) {
int j = (i + 1) % n;
area += polygon[i].x * polygon[j].y - polygon[j].x * polygon[i].y;
}
return area / 2;
}
// 计算多边形的交集面积
double polygonIntersectionArea(const vector<Point>& polygon1, const vector<Point>& polygon2) {
double area = 0;
int n1 = polygon1.size();
int n2 = polygon2.size();
for (int i = 0; i < n1; i++) {
int j = (i + 1) % n1;
for (int k = 0; k < n2; k++) {
int l = (k + 1) % n2;
Point p1 = polygon1[i];
Point p2 = polygon1[j];
Point q1 = polygon2[k];
Point q2 = polygon2[l];
double t1 = (q1.x - p1.x) * (p2.y - p1.y) - (p2.x - p1.x) * (q1.y - p1.y);
double t2 = (q2.x - p1.x) * (p2.y - p1.y) - (p2.x - p1.x) * (q2.y - p1.y);
double t3 = (p1.x - q1.x) * (q2.y - q1.y) - (q2.x - q1.x) * (p1.y - q1.y);
double t4 = (p2.x - q1.x) * (q2.y - q1.y) - (q2.x - q1.x) * (p2.y - q1.y);
if (t1 * t2 < 0 && t3 * t4 < 0) {
Point p = {0, 0};
p.x = (t2 * q1.x - t1 * q2.x) / (t2 - t1);
p.y = (t2 * q1.y - t1 * q2.y) / (t2 - t1);
area += polygonArea(vector<Point>{p1, p, p2});
}
}
}
return area;
}
// 计算两个多边形的IOU
double polygonIOU(const vector<Point>& polygon1, const vector<Point>& polygon2) {
double area1 = polygonArea(polygon1);
double area2 = polygonArea(polygon2);
double intersectionArea = polygonIntersectionArea(polygon1, polygon2);
double unionArea = area1 + area2 - intersectionArea;
return intersectionArea / unionArea;
}
int main() {
// 示例1:边长为1的正方形和边长为2的正方形,重叠面积为1,总面积为4
vector<Point> polygon1{{0, 0}, {1, 0}, {1, 1}, {0, 1}};
vector<Point> polygon2{{0.5, 0.5}, {2.5, 0.5}, {2.5, 2.5}, {0.5, 2.5}};
double iou = polygonIOU(polygon1, polygon2);
cout << "IOU: " << iou << endl;
// 示例2:半径为1的圆和半径为2的圆,重叠面积为2.828,总面积为9.424
const double pi = 3.14159265358979323846;
vector<Point> circle1;
vector<Point> circle2;
int n = 100;
for (int i = 0; i < n; i++) {
double angle = 2 * pi / n * i;
Point p1 = {cos(angle), sin(angle)};
Point p2 = {2 * cos(angle), 2 * sin(angle)};
circle1.push_back(p1);
circle2.push_back(p2);
}
iou = polygonIOU(circle1, circle2);
cout << "IOU: " << iou << endl;
return 0;
}
```
以上代码实现了计算两个多边形IOU的功能,并提供了两个示例。其中,`polygonArea`函数用于计算多边形面积;`polygonIntersectionArea`函数用于计算两个多边形的交集面积;`polygonIOU`函数用于计算两个多边形的IOU。
阅读全文