scaler = MinMaxScaler() X_train = scaler.fit_transform(X_train) X_val = scaler.transform(X_val) X_test = scaler.transform(X_test) y_train = scaler.fit_transform(y_train) y_val = scaler.transform(y_val) y_test = scaler.transform(y_test根据这段代码写出反归一化
时间: 2024-01-26 21:05:01 浏览: 91
归一化算法代码,用于图像归一化
假设你用的是 MinMaxScaler 进行归一化处理,反归一化的代码如下:
```
# 定义反归一化函数
def inverse_min_max_scaler(data, scaler):
min_val = scaler.data_min_
max_val = scaler.data_max_
return data * (max_val - min_val) + min_val
# 对训练集进行反归一化处理
X_train_inverse = inverse_min_max_scaler(X_train, scaler)
y_train_inverse = inverse_min_max_scaler(y_train, scaler)
# 对验证集进行反归一化处理
X_val_inverse = inverse_min_max_scaler(X_val, scaler)
y_val_inverse = inverse_min_max_scaler(y_val, scaler)
# 对测试集进行反归一化处理
X_test_inverse = inverse_min_max_scaler(X_test, scaler)
y_test_inverse = inverse_min_max_scaler(y_test, scaler)
```
需要注意的是,反归一化的过程中需要传入之前用于归一化的 Scaler 对象,以便正确计算反归一化值。
阅读全文