linux在创建线程时出错start_thread函数位置报错

时间: 2024-02-18 17:59:07 浏览: 28
当在 Linux 上创建线程时,可能会遇到 start_thread() 函数位置报错的问题。这通常是由于缺少必要的库文件或库文件版本不兼容所导致的。 解决此问题的方法之一是安装或更新 glibc 库。可以使用以下命令检查 glibc 库的版本: ``` ldd --version ``` 如果版本较旧,则可以使用以下命令更新 glibc 库: ``` sudo apt-get update sudo apt-get install libc6-dev ``` 如果更新后仍然存在问题,可以尝试重新编译程序并链接到正确的库文件。
相关问题

start_thread函数

start_thread函数是一个线程创建函数,它是POSIX线程库(pthread)中的一个函数。它的作用是创建一个新的线程,并在该线程中执行指定的线程函数。该函数的原型如下: ```c int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine)(void *), void *arg); ``` 其中,参数thread是一个指向pthread_t类型的指针,用于存储新创建线程的标识符;参数attr是一个指向pthread_attr_t类型的指针,用于指定新线程的属性;参数start_routine是一个指向线程函数的指针,新线程将在其中执行;参数arg是一个指向线程函数的参数的指针,它将作为线程函数的参数传递给start_routine。 当start_thread函数被调用时,它将创建一个新的线程,并将调用参数start_routine所指向的线程函数,并将arg作为它的参数。线程函数的返回值将作为新线程的退出状态。如果线程创建成功,则返回0,否则返回一个非0值。

pthread_create函数创建线程过程

pthread_create函数用于创建一个新的线程。它的原型如下: ```c #include <pthread.h> int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg); ``` 参数说明: - thread:指向pthread_t类型的指针,用于存储创建的线程ID。 - attr:指向pthread_attr_t类型的指针,用于设置线程的属性,通常可以设置为NULL使用默认属性。 - start_routine:一个函数指针,指向新线程将要执行的函数。该函数必须返回一个void指针,并且接受一个void指针作为参数。 - arg:传递给start_routine函数的参数。 调用pthread_create函数时,新线程开始执行指定的start_routine函数,并将arg作为参数传递给该函数。成功创建线程后,对应的线程ID将存储在thread指向的内存中。 需要注意的是,创建线程成功时pthread_create函数返回0,否则返回一个非零的错误码,可以通过查看错误码来确定出现了什么错误。 创建线程后,可以通过pthread_join函数等待新创建的线程执行完毕,也可以通过pthread_detach函数将线程设置为分离状态,使其在结束时自动释放资源。

相关推荐

最新推荐

recommend-type

python使用threading获取线程函数返回值的实现方法

`start`方法负责启动线程,通过遍历`func_list`,为每个函数创建一个新的`Thread`实例,然后调用`start`方法启动线程。`join`方法被用来等待所有线程执行完毕,确保主线程不会提前结束。 为了获取线程函数的返回值...
recommend-type

利用Lambda表达式创建新线程案例

在这个例子中,`task.run()`是在线程main中执行的,而`thread.start()`则会启动一个新的线程来执行`Runnable`任务。在主线程打印"Done!"之后,新线程可能会或可能不会开始执行,这取决于线程调度。 此外,还可以...
recommend-type

Java创建多线程异步执行实现代码解析

在main方法中,我们创建了一个ThreadTest对象,并调用了start()方法来启动该线程。 使用Lambda表达式 使用Lambda表达式可以简化Runnable接口的实现过程。以下代码就使用了Lambda表达式来实现Runnable接口: ```...
recommend-type

在python中实现强制关闭线程的示例

在Python编程中,多线程是并发执行任务的重要方式,但有时我们需要在程序运行过程中强制结束某个线程。本文将详细讲解如何在Python中实现强制关闭线程,并提供一个具体的示例。 首先,理解Python线程的基本概念。...
recommend-type

QNX环境下多线程编程

pthread_create()函数创建的线程执行start_routine()函数,thread返回创建的线程描述符,而attr是创建线程时设置的线程属性,arg可以作为任意类型的参数传给start_routine()函数。 QNX对创建线程前需要设置的线程...
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。