分析代码class N_need: def __init__(self, max_len): self.max_len = max_len self.set_all = set([i for i in range(max_len)]) # 初始化全部情况 name_list = ["nc", "nu", "ncf", "nuf", "ncs", "nus"] self.nc_res = [] for i in range(max_len): self.nc_res.append(dict()) for _ in name_list: self.nc_res[i][_] = 0 self._temp_process = set() def process(self, number): self._temp_process.add(number) def update(self, flag): diff_set = self.set_all - self._temp_process for _num in list(self._temp_process): self.nc_res[_num]["nc"] += 1 if flag: self.nc_res[_num]["ncs"] += 1 else: self.nc_res[_num]["ncf"] += 1 for _num in list(diff_set): self.nc_res[_num]["nu"] += 1 if flag: self.nc_res[_num]["nus"] += 1 else: self.nc_res[_num]["nuf"] += 1 self._temp_process = set() def __getitem__(self, item): res = self.nc_res[item] return [item, res['nc'], res['nu'], res['ncf'], res['nuf'], res['ncs'], res['nus']] def __len__(self): return self.max_len nc = N_need(21)

时间: 2024-02-14 15:12:51 浏览: 21
这段代码定义了一个名为 `N_need` 的类,它包含以下方法: - `__init__(self, max_len)`:构造函数,初始化 `max_len` 和 `set_all` 属性,并初始化一个 `nc_res` 列表,包含 `max_len` 个字典,每个字典代表一个数字对应的统计结果,同时将 `_temp_process` 属性初始化为空集合。 - `process(self, number)`:将 `number` 添加到 `_temp_process` 集合中。 - `update(self, flag)`:根据 `flag` 更新统计结果,将 `_temp_process` 集合中的数字加入到 `nc_res` 列表中对应的字典中,同时将未处理的数字加入到对应字典的其他字段中。 - `__getitem__(self, item)`:根据 `item` 返回对应数字的统计结果。 - `__len__(self)`:返回 `max_len` 属性的值。 在代码最后,创建了一个名为 `nc` 的 `N_need` 对象,`max_len` 属性值为 21。
相关问题

写一段transformer代码

### 回答1: 好的,以下是一个简单的 Transformer 代码示例: ``` import tensorflow as tf class Transformer(tf.keras.Model): def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, target_vocab_size, rate=0.1): super(Transformer, self).__init__() self.encoder = Encoder(num_layers, d_model, num_heads, dff, input_vocab_size, rate) self.decoder = Decoder(num_layers, d_model, num_heads, dff, target_vocab_size, rate) self.final_layer = tf.keras.layers.Dense(target_vocab_size) def call(self, inp, tar, training, enc_padding_mask, look_ahead_mask, dec_padding_mask): enc_output = self.encoder(inp, training, enc_padding_mask) dec_output, attention_weights = self.decoder( tar, enc_output, training, look_ahead_mask, dec_padding_mask) final_output = self.final_layer(dec_output) return final_output, attention_weights class Encoder(tf.keras.layers.Layer): def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, rate=0.1): super(Encoder, self).__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model) self.pos_encoding = positional_encoding(input_vocab_size, self.d_model) self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers)] self.dropout = tf.keras.layers.Dropout(rate) def call(self, x, training, mask): seq_len = tf.shape(x)[1] # adding embedding and position encoding. x = self.embedding(x) # (batch_size, input_seq_len, d_model) x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) x += self.pos_encoding[:, :seq_len, :] x = self.dropout(x, training=training) for i in range(self.num_layers): x = self.enc_layers[i](x, training, mask) return x class EncoderLayer(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, dff, rate=0.1): super(EncoderLayer, self).__init__() self.mha = MultiHeadAttention(d_model, num_heads) self.ffn = point_wise_feed_forward_network(d_model, dff) self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.dropout1 = tf.keras.layers.Dropout(rate) self.dropout2 = tf.keras.layers.Dropout(rate) def call(self, x, training, mask): attn_output, _ = self.mha(x, x, x, mask) attn_output = self.dropout1(attn_output, training=training) out1 = self.layernorm1(x + attn_output) ffn_output = self.ffn(out1) ffn_output = self.dropout2(ffn_output, training=training) out2 = self.layernorm2(out1 + ffn_output) return out2 class Decoder(tf.keras.layers.Layer): def __init__(self, num_layers, d_model, num_heads, dff, target_vocab_size, rate=0.1): super(Decoder, self).__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = tf.keras.layers ### 回答2: Transformer是一种用于自然语言处理的深度学习模型。以下是一个使用Python编写的简单Transformer代码段,用于进行文本分类任务: ```python import torch import torch.nn as nn import torch.optim as optim class Transformer(nn.Module): def __init__(self, input_dim, output_dim, hidden_dim, num_layers, num_heads): super(Transformer, self).__init__() self.embedding = nn.Embedding(input_dim, hidden_dim) self.positional_encoding = PositionalEncoding(hidden_dim) self.transformer_encoder_layer = nn.TransformerEncoderLayer(hidden_dim, num_heads) self.transformer_encoder = nn.TransformerEncoder(self.transformer_encoder_layer, num_layers) self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, x): embedded = self.embedding(x) encoded = self.positional_encoding(embedded) transformed = self.transformer_encoder(encoded) pooled = torch.mean(transformed, dim=1) output = self.fc(pooled) return output class PositionalEncoding(nn.Module): def __init__(self, hidden_dim, max_seq_len=300): super(PositionalEncoding, self).__init__() self.hidden_dim = hidden_dim self.dropout = nn.Dropout(p=0.1) pe = torch.zeros(max_seq_len, hidden_dim) position = torch.arange(0, max_seq_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, hidden_dim, 2) * -(math.log(10000.0) / hidden_dim)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe.unsqueeze(0)) def forward(self, x): x = x * math.sqrt(self.hidden_dim) x = x + self.pe[:, :x.size(1)] x = self.dropout(x) return x ``` 以上代码定义了一个Transformer模型类,包括一个词嵌入层、位置编码层、Transformer编码层和一个全连接层。其中,位置编码层使用来自论文《Attention is All You Need》中提出的方法,用于为序列中的词汇位置添加信息。模型的前向传播过程首先对输入的文本进行词嵌入,然后进行位置编码,接着使用Transformer编码层进行特征提取和表示学习,将输出进行平均池化后再通过全连接层进行分类预测。这段代码可以用于文本分类任务中,输入是一个整数序列,输出是每个类别的预测概率。 ### 回答3: Transformer是一种深度学习模型架构,适用于自然语言处理任务,例如机器翻译、文本生成等。下面是一个简单的Transformer代码示例: ```python import torch import torch.nn as nn import torch.nn.functional as F class TransformerEncoder(nn.Module): def __init__(self, input_size, hidden_size, num_layers, num_heads): super(TransformerEncoder, self).__init__() self.embedding = nn.Embedding(input_size, hidden_size) self.position_encoding = PositionalEncoding(hidden_size) self.encoder_layer = TransformerEncoderLayer(hidden_size, num_heads) def forward(self, inputs): embeddings = self.embedding(inputs) encoded = self.position_encoding(embeddings) output = self.encoder_layer(encoded) return output class PositionalEncoding(nn.Module): def __init__(self, hidden_size, max_sequence_length=1000): super(PositionalEncoding, self).__init__() position_encoding = torch.zeros(max_sequence_length, hidden_size) position = torch.arange(0, max_sequence_length, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, hidden_size, 2).float() * (-math.log(10000.0) / hidden_size)) position_encoding[:, 0::2] = torch.sin(position * div_term) position_encoding[:, 1::2] = torch.cos(position * div_term) self.register_buffer('position_encoding', position_encoding) def forward(self, inputs): seq_length = inputs.size(1) position_encoding = self.position_encoding[:seq_length, :] return inputs + position_encoding class TransformerEncoderLayer(nn.Module): def __init__(self, hidden_size, num_heads, dropout=0.1): super(TransformerEncoderLayer, self).__init__() self.self_attention = MultiHeadAttention(hidden_size, num_heads) self.feed_forward = FeedForward(hidden_size) self.dropout = nn.Dropout(dropout) def forward(self, inputs): attended = self.self_attention(inputs) attended = self.dropout(attented) output = attended + inputs output = self.feed_forward(output) output = self.dropout(output) return output class MultiHeadAttention(nn.Module): def __init__(self, hidden_size, num_heads): super(MultiHeadAttention, self).__init__() self.hidden_size = hidden_size self.num_heads = num_heads self.head_size = hidden_size // num_heads self.W_q = nn.Linear(hidden_size, hidden_size) self.W_k = nn.Linear(hidden_size, hidden_size) self.W_v = nn.Linear(hidden_size, hidden_size) self.W_o = nn.Linear(hidden_size, hidden_size) def forward(self, inputs): batch_size, seq_length, _ = inputs.size() query = self.W_q(inputs) key = self.W_k(inputs) value = self.W_v(inputs) query = query.view(batch_size, seq_length, self.num_heads, self.head_size).transpose(1, 2) key = key.view(batch_size, seq_length, self.num_heads, self.head_size).transpose(1, 2) value = value.view(batch_size, seq_length, self.num_heads, self.head_size).transpose(1, 2) attention_scores = torch.matmul(query, key.transpose(-1, -2)) / math.sqrt(self.head_size) attention_probs = F.softmax(attention_scores, dim=-1) attended = torch.matmul(attention_probs, value).transpose(1, 2).contiguous().view(batch_size, seq_length, self.hidden_size) output = self.W_o(attended) return output class FeedForward(nn.Module): def __init__(self, hidden_size, dropout=0.1): super(FeedForward, self).__init__() self.linear1 = nn.Linear(hidden_size, 4 * hidden_size) self.linear2 = nn.Linear(4 * hidden_size, hidden_size) self.dropout = nn.Dropout(dropout) def forward(self, inputs): output = self.linear1(inputs) output = F.relu(output) output = self.dropout(output) output = self.linear2(output) return output ``` 以上是一个简单的Transformer模型代码示例,包括了TransformerEncoder、PositionalEncoding、TransformerEncoderLayer、MultiHeadAttention和FeedForward等模块的实现。这段代码可以作为一个Transformer模型的基本框架,但是其中的具体实现可能需要根据具体任务需求进行调整和优化。

语言翻译transformer代码

以下是一个简单的语言翻译Transformer的代码示例,使用PyTorch实现: ```python import torch import torch.nn as nn import torch.nn.functional as F class Transformer(nn.Module): def __init__(self, input_dim, output_dim, d_model, nhead, num_layers, dim_feedforward, dropout): super().__init__() self.encoder = nn.Embedding(input_dim, d_model) self.decoder = nn.Embedding(output_dim, d_model) self.pos_encoder = PositionalEncoding(d_model, dropout) self.pos_decoder = PositionalEncoding(d_model, dropout) self.transformer = nn.Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_layers, num_decoder_layers=num_layers, dim_feedforward=dim_feedforward, dropout=dropout) self.fc = nn.Linear(d_model, output_dim) def forward(self, src, tgt): src_mask = self._generate_square_subsequent_mask(len(src)).to(src.device) tgt_mask = self._generate_square_subsequent_mask(len(tgt)).to(tgt.device) src_embed = self.pos_encoder(self.encoder(src)) tgt_embed = self.pos_decoder(self.decoder(tgt)) memory = self.transformer.encoder(src_embed, src_mask) output = self.transformer.decoder(tgt_embed, memory, tgt_mask) output = self.fc(output) return output def _generate_square_subsequent_mask(self, sz): mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) return mask class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super().__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return self.dropout(x) ``` 在这个例子中,我们定义了一个名为Transformer的类,它继承自nn.Module,并包含以下组件: - 一个嵌入层,用于将输入和输出序列中的标记转换为特征向量。 - 一个位置编码层,用于为每个输入和输出序列的标记添加位置编码。 - 一个Transformer模型,其中包含编码器和解码器,用于将输入序列转换为输出序列。 - 一个线性层,用于将Transformer输出转换为输出标记的概率分布。 在forward方法中,我们首先使用生成的掩码来掩盖输入和输出序列中的填充标记,并将嵌入后的序列传递到位置编码层中。然后,我们使用编码器来生成内存表示,并将其用于解码器,以生成最终的输出。最后,我们将Transformer模型的输出馈入线性层,以将其转换为输出标记的概率分布。 此外,我们还定义了一个名为PositionalEncoding的辅助类,用于为输入和输出序列中的标记添加位置编码。在这个类中,我们使用了一个类似于Attention is All You Need论文中的公式来生成位置编码。

相关推荐

最新推荐

recommend-type

ChatGPT4.0知识问答、DALL-E生成AI图片、Code Copilot辅助编程,打开新世界的大门.txt

ChatGPT4.0知识问答、DALL-E生成AI图片、Code Copilot辅助编程,打开新世界的大门
recommend-type

基于matlab实现DOA 估计和自适应波束形成.rar

基于matlab实现DOA 估计和自适应波束形成.rar
recommend-type

基于C++的线程安全容器。.zip

基于C++的线程安全容器。.zip
recommend-type

华为数字化转型实践28个精华问答glkm.pptx

华为数字化转型实践28个精华问答glkm.pptx
recommend-type

本周-综合案例.zip

本周-综合案例.zip
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Redis验证与连接:快速连接Redis服务器指南

![Redis验证与连接:快速连接Redis服务器指南](https://img-blog.csdnimg.cn/20200905155530592.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzMzNTg5NTEw,size_16,color_FFFFFF,t_70) # 1. Redis验证与连接概述 Redis是一个开源的、内存中的数据结构存储系统,它使用键值对来存储数据。为了确保数据的安全和完整性,Redis提供了多
recommend-type

gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker app:app 报错 ModuleNotFoundError: No module named 'geventwebsocket' ]

这个报错是因为在你的环境中没有安装 `geventwebsocket` 模块,可以使用下面的命令来安装: ``` pip install gevent-websocket ``` 安装完成后再次运行 `gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker app:app` 就不会出现这个报错了。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。