代码解释 data_dict[tag] = (np.array(data), np.array(time_axis))
时间: 2024-06-06 09:08:11 浏览: 134
这行代码将一个元组`(np.array(data), np.array(time_axis))`作为值,以标签`tag`作为键,添加到`data_dict`字典中。
其中,`np.array(data)`和`np.array(time_axis)`分别用于将列表`data`和`time_axis`转换为NumPy数组。这意味着字典`data_dict`的值将是一个元组,其中第一个元素是一个包含数据的NumPy数组,第二个元素是一个包含时间轴的NumPy数组。
相关问题
x_note = [] x_offset = [] for press_time_dict in midi_list: last_offset = Fraction(0, 1) sorted_keys = sorted(press_time_dict.keys(), key=lambda t: float(Fraction(t))) for i, key in enumerate(sorted_keys): note_arr = np.zeros(shape=(len(total_keys), len(duration_keys)), dtype=np.float32) for note, duration in press_time_dict[key]: note_arr[total_keys.index(note), duration_keys.index(duration)] = 1. note_arr[np.max(note_arr, axis=-1) == 0., duration_keys.index('0')] = 1. cur_offset = Fraction(key) x_offset.append(str(cur_offset - last_offset)) last_offset = cur_offset x_note.append(note_arr) x_note = np.stack(x_note, axis=0) offset_keys = list(set(x_offset)) x_offset_idx = np.array([offset_keys.index(offset_type) for offset_type in x_offset]) x_offset = np.eye(len(offset_keys), dtype=np.int32)[x_offset_idx] x_offset = np.array(x_offset, dtype=np.float32) np.save("notes_array.npy", x_note) np.save("offsets_array.npy", x_offset) np.save("note_keys_dict.npy", total_keys) np.save("note_offsets_dict.npy", offset_keys) np.save("note_durations_dict.npy", duration_keys)
这段代码的作用是将`midi_list`列表中的所有键值对转换为神经网络的输入格式。具体来说,它将每个键值对转换为一个二维数组,其中每行表示一个音符,每列表示一个持续时间。对于每个键值对,它还将其对应的偏移量记录在`x_offset`列表中。
在代码的第一部分中,它遍历`midi_list`中的每个键值对,并按照键的顺序将其排序。然后,它遍历排序后的键,并将其转换为一个二维数组。对于每个音符,它使用`total_keys`和`duration_keys`中的索引来确定其在数组中的位置,并将该位置的值设置为1。如果一个音符在该键值对中没有出现,则该位置的值为0。对于每个键值对,它还将持续时间为0的音符设置为1,以使这些音符可以被正确地处理。
在代码的第二部分中,它使用`x_offset`列表中的偏移量将每个键值对与其之前的键值对分开。然后,它将`x_note`和`x_offset`转换为NumPy数组,并将它们保存在`.npy`文件中。最后,它将`total_keys`、`offset_keys`和`duration_keys`保存为`.npy`文件,以便在模型训练过程中使用。
unique_synsets = np.unique(self.synsets) class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets)) if not self.keep_orig_class_label: self.class_labels = [class_dict[s] for s in self.synsets] else: self.class_labels = [self.synset2idx[s] for s in self.synsets] with open(self.human_dict, "r") as f: human_dict = f.read().splitlines() human_dict = dict(line.split(maxsplit=1) for line in human_dict) self.human_labels = [human_dict[s] for s in self.synsets] labels = { "relpath": np.array(self.relpaths), "synsets": np.array(self.synsets), "class_label": np.array(self.class_labels), "human_label": np.array(self.human_labels), } if self.process_images: self.size = retrieve(self.config, "size", default=256) self.data = ImagePaths(self.abspaths, labels=labels, size=self.size, random_crop=self.random_crop, ) else: self.data = self.abspaths详细解析
这段代码是一个数据预处理的过程,主要是为了将一个数据集的图像路径、类别标签等信息整理成一个可用于训练模型的数据集。
首先,通过 `np.unique` 函数将数据集中所有的类别标签去重得到 `unique_synsets`,然后用字典 `class_dict` 将每个类别标签映射到一个数字编码。如果 `keep_orig_class_label` 参数为 `True`,则使用 `self.synset2idx` 字典将原始的类别标签映射到数字编码,否则直接使用 `class_dict`。
接着,从文件中读取包含人类可读的类别标签的字典 `human_dict`,将每个类别标签映射到对应的人类可读的标签,并将结果保存在 `self.human_labels` 中。
最后,将图像路径、类别标签、人类可读的标签等信息整理成一个字典 `labels`,并根据 `process_images` 参数决定是否对图像进行预处理。如果需要预处理图像,则使用 `ImagePaths` 类将图像路径和标签整理成一个数据集;否则直接将图像路径和标签整理成一个字典 `self.abspaths`。整个预处理过程的结果保存在 `self.data` 中,供模型训练使用。
阅读全文