复化simpson公式求积分matlab
时间: 2023-04-29 17:03:06 浏览: 1143
复化Simpson公式是一种数值积分方法,可以用来近似计算定积分。在MATLAB中,可以使用以下代码来实现复化Simpson公式求积分:
function I = simpson(f, a, b, n)
% f: 被积函数
% a: 积分下限
% b: 积分上限
% n: 分段数
h = (b - a) / n; % 求出每个小区间的长度
x = a:h:b; % 将积分区间分成n个小区间
y = f(x); % 计算每个小区间的函数值
I = h / 3 * (y(1) + 4 * sum(y(2:2:end-1)) + 2 * sum(y(3:2:end-2)) + y(end)); % 计算积分值
end
其中,f是被积函数,a和b是积分下限和上限,n是分段数。函数中,首先计算每个小区间的长度h,然后将积分区间分成n个小区间,并计算每个小区间的函数值。最后,根据复化Simpson公式的公式,计算积分值I,并返回结果。
相关问题
用matlab采用复化梯形公式、复化Simpson公式求积分
假设要求积分的函数为 $f(x)$,积分区间为 $[a,b]$,将 $[a,b]$ 分成 $n$ 个小区间,每个小区间的长度为 $h = \frac{b-a}{n}$,则有:
复化梯形公式:
$$
\int_a^b f(x) dx \approx \frac{h}{2} [f(a) + 2\sum_{i=1}^{n-1} f(x_i) + f(b)]
$$
其中,$x_i = a + ih$。
复化Simpson公式:
当 $n$ 为偶数时,
$$
\int_a^b f(x) dx \approx \frac{h}{3} [f(a) + 4\sum_{i=1}^{n/2-1} f(x_{2i}) + 2\sum_{i=1}^{n/2} f(x_{2i-1}) + f(b)]
$$
其中,$x_i = a + ih$。
当 $n$ 为奇数时,可以先用复化梯形公式计算一次,然后用复化Simpson公式计算剩余部分。
下面是 MATLAB 代码实现:
复化梯形公式:
```matlab
function I = trapezoid(f, a, b, n)
% 复化梯形公式求积分
% f:被积函数
% a:积分下限
% b:积分上限
% n:小区间数
h = (b - a) / n;
x = a:h:b;
I = h / 2 * (f(a) + 2 * sum(f(x(2:end-1))) + f(b));
end
```
复化Simpson公式:
```matlab
function I = simpson(f, a, b, n)
% 复化Simpson公式求积分
% f:被积函数
% a:积分下限
% b:积分上限
% n:小区间数,必须为偶数
if mod(n,2) ~= 0
error('n必须为偶数');
end
h = (b - a) / n;
x = a:h:b;
I = h / 3 * (f(a) + 4 * sum(f(x(2:2:end-2))) + 2 * sum(f(x(3:2:end-1))) + f(b));
end
```
Matlab采用复化梯形公式、复化Simpson公式求积分的程序
复化梯形公式和复化Simpson公式是常用的求解数值积分的方法,下面是用Matlab实现这两种方法的程序:
1. 复化梯形公式:
```matlab
function I = Trapezoidal(f,a,b,n)
% 复化梯形公式
% f:被积函数
% a、b:积分区间
% n:分段数
h = (b-a)/n; % 计算步长
x = linspace(a,b,n+1); % 等分节点
y = f(x); % 计算函数值
I = h*(sum(y)-0.5*(y(1)+y(n+1))); % 计算积分值
end
```
2. 复化Simpson公式:
```matlab
function I = Simpson(f,a,b,n)
% 复化Simpson公式
% f:被积函数
% a、b:积分区间
% n:分段数(n为偶数)
h = (b-a)/n; % 计算步长
x = linspace(a,b,n+1); % 等分节点
y = f(x); % 计算函数值
I = h/3*(y(1)+y(n+1)+4*sum(y(2:2:n))+2*sum(y(3:2:n-1))); % 计算积分值
end
```
使用时,只需将被积函数及其积分区间和分段数传入函数即可,例如:
```matlab
f = @(x) x.^2.*sin(x); % 定义被积函数
a = 0; % 积分下限
b = pi; % 积分上限
n = 10; % 分段数
I1 = Trapezoidal(f,a,b,n); % 使用复化梯形公式计算积分
I2 = Simpson(f,a,b,n); % 使用复化Simpson公式计算积分
```
其中,`I1`和`I2`即为使用复化梯形公式和复化Simpson公式求解的积分值。
阅读全文