ffn_channel = FFN_Expand * c#将输入的通道数c乘以前馈神经网络(Feedforward Neural Network) self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv5 = nn.Conv2d(in_channels=ffn_channel, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.norm1 = LayerNorm2d(c) self.norm2 = LayerNorm2d(c) self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)代码中文含义
时间: 2023-10-01 19:10:00 浏览: 365
这段代码是一个PyTorch神经网络的实现,其中定义了一些层和参数。具体解释如下:
- 第1行:定义了一个变量ffn_channel,其值等于输入的通道数c乘以一个常量FFN_Expand,用于作为前馈神经网络中的输入和输出通道数。
- 第2-3行:定义了两个卷积层,分别为self.conv4和self.conv5,其中self.conv4的输入通道数为c,输出通道数为ffn_channel,kernel_size=1表示使用1x1的卷积核,padding和stride都为0,groups和bias默认为1和True;self.conv5的输入通道数为ffn_channel,输出通道数为c,其他参数与self.conv4相同。
- 第4-5行:定义了两个LayerNorm2d层,分别为self.norm1和self.norm2,输入通道数均为c,用于对卷积层的输出进行归一化处理。
- 第6-7行:定义了两个Dropout层,分别为self.dropout1和self.dropout2,输入参数为drop_out_rate,如果drop_out_rate大于0则使用nn.Dropout,否则使用nn.Identity,用于对输入进行随机失活处理。
- 第8-9行:定义了两个可学习的参数,分别为self.beta和self.gamma,均为1x1的张量,输入通道数均为c,用于对归一化后的结果进行缩放和平移操作。
这段代码实现了一个卷积神经网络中的残差块(Residual Block),其中包含了前馈神经网络、残差连接、归一化和随机失活等常用的操作。
相关问题
def __init__(self, c, DW_Expand=1, FFN_Expand=2, drop_out_rate=0.): super().__init__() dw_channel = c * DW_Expand代码中文含义
这段代码是一个类的初始化函数,接收四个参数:c表示输入的通道数,DW_Expand表示深度可分离卷积的扩展倍数,默认为1,FFN_Expand表示前馈神经网络的扩展倍数,默认为2,drop_out_rate表示Dropout层的丢弃率,默认为0。
在函数内部,调用父类的初始化函数。然后,根据输入的通道数和深度可分离卷积的扩展倍数计算出深度可分离卷积的输出通道数,赋值给dw_channel变量。最后,将输入的参数保存为类的属性,以便后续调用。
class Baseline(nn.Module): def __init__(self, img_channel=3, width=16, middle_blk_num=1, enc_blk_nums=[], dec_blk_nums=[], dw_expand=1, ffn_expand=2): super().__init__() self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1, bias=True) self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1, bias=True) self.encoders = nn.ModuleList() self.decoders = nn.ModuleList() self.middle_blks = nn.ModuleList() self.ups = nn.ModuleList() self.downs = nn.ModuleList()代码中文含义
这段代码是一个名为 Baseline 的 PyTorch 模型的定义,它包含了一个卷积神经网络的编码器和解码器部分,用于图像处理任务。其中:
- img_channel 表示输入图像的通道数(默认为 3);
- width 表示网络中使用的特征图的通道数(默认为 16);
- middle_blk_num 表示中间块的数量(默认为 1);
- enc_blk_nums 和 dec_blk_nums 分别表示编码器和解码器中使用的块的数量(默认为空);
- dw_expand 和 ffn_expand 分别表示块中深度扩展和前馈扩展的倍数(默认为 1 和 2)。
该模型包含以下层:
- intro:输入图像的卷积层,输出特征图;
- ending:输出图像的卷积层,将特征图转化为图像;
- encoders:编码器中的块,用于逐步提取图像特征;
- decoders:解码器中的块,用于逐步恢复原始图像;
- middle_blks:中间块,用于连接编码器和解码器;
- ups 和 downs:上采样和下采样层,用于图像尺寸的调整。
这些层被封装在 PyTorch 中的 nn.ModuleList 中,可以通过调用 forward 方法来执行模型的前向传播。