return init_lr * warmup_steps ** 0.5 * tf.minimum(step * warmup_steps ** -1.5, step ** -0.5)

时间: 2023-12-07 11:03:05 浏览: 39
这是一个TensorFlow的表达式,通常在训练机器学习模型时使用。具体来说,它似乎是一个学习率调整策略的一部分,通常用于优化算法(如Adam)。让我详细解释一下这个表达式: * `init_lr`:这是初始学习率,即在训练开始时使用的。 * `warmup_steps`:这是一个步骤数,用于逐步提升学习率。 * `warmup_steps ** 0.5`:这是一个操作,它取`warmup_steps`的平方根。这通常是为了在开始时更快地提升模型性能。 * `tf.minimum(step * warmup_steps ** -1.5, step ** -0.5)`:这个操作首先取`step`乘以`warmup_steps`的负1.5次方,然后再取`step`的负0.5次方。这是为了根据当前的步骤数调整学习率。如果步骤数很大,那么可能会选择较小的学习率;如果步骤数较小,那么可能会选择较大的学习率。 总的来说,这个表达式是在计算当前步骤的学习率。在机器学习模型训练中,学习率是一个重要的超参数,它决定了模型在优化过程中能达到的性能。不同的学习率策略可能会对模型的性能产生显著的影响。 如果你需要关于如何使用这个表达式的更多信息,或者在使用过程中遇到任何问题,欢迎随时向我提问。
相关问题

def get_lr_scheduler(lr_decay_type, lr, min_lr, total_iters, warmup_iters_ratio=0.1, warmup_lr_ratio=0.1, no_aug_iter_ratio=0.3, step_num=10): def yolox_warm_cos_lr(lr, min_lr, total_iters, warmup_total_iters, warmup_lr_start, no_aug_iter, iters): if iters <= warmup_total_iters: # lr = (lr - warmup_lr_start) * iters / float(warmup_total_iters) + warmup_lr_start lr = (lr - warmup_lr_start) * pow(iters / float(warmup_total_iters), 2 ) + warmup_lr_start elif iters >= total_iters - no_aug_iter: lr = min_lr else: lr = min_lr + 0.5 * (lr - min_lr) * ( 1.0 + math.cos( math.pi * (iters - warmup_total_iters) / (total_iters - warmup_total_iters - no_aug_iter) ) ) return lr def step_lr(lr, decay_rate, step_size, iters): if step_size < 1: raise ValueError("step_size must above 1.") n = iters // step_size out_lr = lr * decay_rate ** n return out_lr if lr_decay_type == "cos": warmup_total_iters = min(max(warmup_iters_ratio * total_iters, 1), 3) warmup_lr_start = max(warmup_lr_ratio * lr, 1e-6) no_aug_iter = min(max(no_aug_iter_ratio * total_iters, 1), 15) func = partial(yolox_warm_cos_lr, lr, min_lr, total_iters, warmup_total_iters, warmup_lr_start, no_aug_iter) else: decay_rate = (min_lr / lr) ** (1 / (step_num - 1)) step_size = total_iters / step_num func = partial(step_lr, lr, decay_rate, step_size) return func什么作用

这段代码定义了一个函数 `get_lr_scheduler`,用于获取学习率调度器(learning rate scheduler)的函数对象。 在函数内部,根据给定的学习率衰减类型 `lr_decay_type`,以及一些其他参数(如学习率、最小学习率、总迭代次数等),选择相应的学习率调度算法。 如果 `lr_decay_type` 是 "cos",则使用 `yolox_warm_cos_lr` 函数作为学习率调度算法。该算法根据当前迭代次数 `iters`,在预热阶段使用余弦函数进行学习率的调整,然后在训练阶段保持学习率不变。 如果 `lr_decay_type` 不是 "cos",则使用 `step_lr` 函数作为学习率调度算法。该算法在训练过程中按照给定的步长进行学习率的衰减。 最后,返回选定的学习率调度算法函数对象。 总而言之,这段代码的作用是根据指定的学习率衰减类型和相关参数,获取相应的学习率调度器函数对象,用于在训练过程中动态地调整学习率。

class CosineScheduler: def __init__(self, max_update, base_lr=0.01, final_lr=0, warmup_steps=0, warmup_begin_lr=0): self.base_lr_orig = base_lr self.max_update = max_update self.final_lr = final_lr self.warmup_steps = warmup_steps self.warmup_begin_lr = warmup_begin_lr self.max_steps = self.max_update - self.warmup_steps def get_warmup_lr(self, epoch): increase = (self.base_lr_orig - self.warmup_begin_lr) \ * float(epoch) / float(self.warmup_steps) return self.warmup_begin_lr + increase def __call__(self, epoch): if epoch < self.warmup_steps: return self.get_warmup_lr(epoch) if epoch <= self.max_update: self.base_lr = self.final_lr + ( self.base_lr_orig - self.final_lr) * (1 + math.cos( math.pi * (epoch - self.warmup_steps) / self.max_steps)) / 2 return self.base_lr scheduler = CosineScheduler(max_update=20, base_lr=0.3, final_lr=0.01) d2l.plot(torch.arange(num_epochs), [scheduler(t) for t in range(num_epochs)])

这段代码实现了一个余弦学习率调度程序,可以在训练神经网络时调整学习率。它包括一个 CosineScheduler 类和一个调用方法。在调用方法中,根据给定的 epoch 值,如果 epoch 值小于预热步数 warmup_steps,则返回预热学习率,否则返回余弦学习率。余弦学习率的计算是通过余弦函数实现的,其中初始学习率 base_lr 逐渐减小到最终学习率 final_lr,然后再逐渐增加回去。该程序还可以设置预热开始学习率 warmup_begin_lr 和预热步数 warmup_steps,并且可以根据最大迭代次数 max_update 计算出最大步数 max_steps。最后,该程序可以通过调用 plot 方法来可视化学习率的变化情况。

相关推荐

def generate_line(box_size, box_center, box_rotation, type_name): # global vis_level yaw = box_rotation dir = np.array([np.math.cos(yaw), np.math.sin(yaw), 0]) ortho_dir = np.array([-dir[1], dir[0], 0]) width = box_size[1] height = box_size[0] deep = box_size[2] center = box_center[0], box_center[1], box_center[2] center = np.array(center) # 计算八个点 points = np.array([[0.0, 0.0, 0.0] for i in range(8)]) z_dir = np.array([0.0, 0.0, 1.0]) points[0] = center + dir * (height * 0.5) + ortho_dir * (width * 0.5) - z_dir * (deep * 0.5) points[1] = center - dir * (height * 0.5) + ortho_dir * (width * 0.5) - z_dir * (deep * 0.5) points[2] = center - dir * (height * 0.5) - ortho_dir * (width * 0.5) - z_dir * (deep * 0.5) points[3] = center + dir * (height * 0.5) - ortho_dir * (width * 0.5) - z_dir * (deep * 0.5) points[4] = center + dir * (height * 0.5) + ortho_dir * (width * 0.5) + z_dir * (deep * 0.5) points[5] = center - dir * (height * 0.5) + ortho_dir * (width * 0.5) + z_dir * (deep * 0.5) points[6] = center - dir * (height * 0.5) - ortho_dir * (width * 0.5) + z_dir * (deep * 0.5) points[7] = center + dir * (height * 0.5) - ortho_dir * (width * 0.5) + z_dir * (deep * 0.5) points = [[points[point_id, 0], points[point_id, 1], points[point_id, 2]] for point_id in range(8)] points = np.array(points) lines = [[0, 1], [1, 2], [2, 3], [3, 0], [4, 5], [5, 6], [6, 7], [7, 4], [0, 4], [1, 5], [2, 6], [3, 7]] line_color = [np.array(box_colormap[label_name[type_name]]) for i in range(len(lines))] return points, lines, line_color给这段代码加注释

最新推荐

recommend-type

解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

在TensorFlow 2.0中,`tf.keras.Model.load_weights()` 是一个非常有用的函数,用于加载预先训练好的权重到模型中,以便继续训练或进行预测。然而,在实际操作中,可能会遇到一些报错,本文将针对这些问题提供解决...
recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

return (1 + TPR - FPR) / 2 ``` 通过自定义评估函数,我们可以更好地理解模型在不同任务上的性能,并根据实际情况调整模型以优化其表现。 总之,遇到`val_categorical_accuracy: 0.0000e+00`的问题时,首先要...
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Python字符串为空判断的常见问题解答:解决常见疑惑

![字符串为空判断](https://img-blog.csdnimg.cn/20210620130654176.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl8zOTQ0NTExNg==,size_16,color_FFFFFF,t_70) # 1. Python字符串为空判断的必要性 在Python编程中,字符串为空判断是至关重要的,它可以帮助我们处理各种场景,例如: - 数据验证:确保用户输入或从数据库获取的
recommend-type

c++ 中 static的作用

在C++中,static是一个常用的修饰符,它可以用来控制变量和函数的存储方式和可见性。static的作用主要有以下几个方面: 1. 静态局部变量:在函数内部定义的变量,加上static关键字后,该变量就被定义成为一个静态局部变量。静态局部变量只会被初始化一次,而且只能在函数内部访问,函数结束后仍然存在,直到程序结束才会被销毁。 2. 静态全局变量:在全局变量前加上static关键字,该变量就被定义成为一个静态全局变量。静态全局变量只能在当前文件中访问,其他文件无法访问,它的生命周期与程序的生命周期相同。 3. 静态成员变量:在类中定义的静态成员变量,可以被所有该类的对象共享,它的值在所