points = np.array([[0.0, 0.0, 0.0] for i in range(8)]) z_dir = np.array([0.0, 0.0, 1.0]) points[0] = center + dir * (height * 0.5) + ortho_dir * (width * 0.5) - z_dir * (deep * 0.5) points[1] = center - dir * (height * 0.5) + ortho_dir * (width * 0.5) - z_dir * (deep * 0.5) points[2] = center - dir * (height * 0.5) - ortho_dir * (width * 0.5) - z_dir * (deep * 0.5) points[3] = center + dir * (height * 0.5) - ortho_dir * (width * 0.5) - z_dir * (deep * 0.5) points[4] = center + dir * (height * 0.5) + ortho_dir * (width * 0.5) + z_dir * (deep * 0.5) points[5] = center - dir * (height * 0.5) + ortho_dir * (width * 0.5) + z_dir * (deep * 0.5) points[6] = center - dir * (height * 0.5) - ortho_dir * (width * 0.5) + z_dir * (deep * 0.5) points[7] = center + dir * (height * 0.5) - ortho_dir * (width * 0.5) + z_dir * (deep * 0.5) points = [[points[point_id, 0], points[point_id, 1], points[point_id, 2]] for point_id in range(8)] points = np.array(points) lines = [[0, 1], [1, 2], [2, 3], [3, 0], [4, 5], [5, 6], [6, 7], [7, 4], [0, 4], [1, 5], [2, 6], [3, 7]]结婚死一下这段代码

时间: 2023-10-29 08:05:49 浏览: 30
这段代码使用 NumPy 库创建了一个包含 8 个三维坐标点的立方体,并定义了它们之间的连线,以便后续的可视化。具体来说,代码的实现步骤如下: 1. 创建一个包含 8 个元素的一维数组 points,每个元素都是一个包含 3 个浮点数的一维数组,表示三维坐标点的 x、y、z 坐标值,初始值都是 0.0。 2. 创建一个包含 3 个浮点数的一维数组 z_dir,表示三维空间中的 z 轴方向。 3. 根据立方体的中心点 center 、方向 dir 、垂直方向的向量 ortho_dir 、高度 height 、宽度 width 和深度 deep 计算出 8 个点的坐标,并分别赋值给 points 数组的不同元素。 4. 将 points 数组转换为一个列表,再将每个列表元素转换为一个包含 3 个浮点数的一维数组,以便后续的可视化。 5. 创建一个列表 lines,其中每个元素都是一个包含 2 个整数的一维数组,表示两个点的索引,表示这两个点之间有一条连线。 完整代码如下: ``` import numpy as np def create_cube(center, dir, ortho_dir, height, width, deep): points = np.array([[0.0, 0.0, 0.0] for i in range(8)]) z_dir = np.array([0.0, 0.0, 1.0]) points[0] = center + dir * (height * 0.5) + ortho_dir * (width * 0.5) - z_dir * (deep * 0.5) points[1] = center - dir * (height * 0.5) + ortho_dir * (width * 0.5) - z_dir * (deep * 0.5) points[2] = center - dir * (height * 0.5) - ortho_dir * (width * 0.5) - z_dir * (deep * 0.5) points[3] = center + dir * (height * 0.5) - ortho_dir * (width * 0.5) - z_dir * (deep * 0.5) points[4] = center + dir * (height * 0.5) + ortho_dir * (width * 0.5) + z_dir * (deep * 0.5) points[5] = center - dir * (height * 0.5) + ortho_dir * (width * 0.5) + z_dir * (deep * 0.5) points[6] = center - dir * (height * 0.5) - ortho_dir * (width * 0.5) + z_dir * (deep * 0.5) points[7] = center + dir * (height * 0.5) - ortho_dir * (width * 0.5) + z_dir * (deep * 0.5) points = [[points[point_id, 0], points[point_id, 1], points[point_id, 2]] for point_id in range(8)] points = np.array(points) lines = [[0, 1], [1, 2], [2, 3], [3, 0], [4, 5], [5, 6], [6, 7], [7, 4], [0, 4], [1, 5], [2, 6], [3, 7]] return points, lines # 示例用法 center = np.array([0.0, 0.0, 0.0]) dir = np.array([0.0, 1.0, 0.0]) ortho_dir = np.array([1.0, 0.0, 0.0]) height = 1.0 width = 1.0 deep = 1.0 points, lines = create_cube(center, dir, ortho_dir, height, width, deep) print(points) print(lines) ```

相关推荐

def generate_line(box_size, box_center, box_rotation, type_name): # global vis_level yaw = box_rotation dir = np.array([np.math.cos(yaw), np.math.sin(yaw), 0]) ortho_dir = np.array([-dir[1], dir[0], 0]) width = box_size[1] height = box_size[0] deep = box_size[2] center = box_center[0], box_center[1], box_center[2] center = np.array(center) # 计算八个点 points = np.array([[0.0, 0.0, 0.0] for i in range(8)]) z_dir = np.array([0.0, 0.0, 1.0]) points[0] = center + dir * (height * 0.5) + ortho_dir * (width * 0.5) - z_dir * (deep * 0.5) points[1] = center - dir * (height * 0.5) + ortho_dir * (width * 0.5) - z_dir * (deep * 0.5) points[2] = center - dir * (height * 0.5) - ortho_dir * (width * 0.5) - z_dir * (deep * 0.5) points[3] = center + dir * (height * 0.5) - ortho_dir * (width * 0.5) - z_dir * (deep * 0.5) points[4] = center + dir * (height * 0.5) + ortho_dir * (width * 0.5) + z_dir * (deep * 0.5) points[5] = center - dir * (height * 0.5) + ortho_dir * (width * 0.5) + z_dir * (deep * 0.5) points[6] = center - dir * (height * 0.5) - ortho_dir * (width * 0.5) + z_dir * (deep * 0.5) points[7] = center + dir * (height * 0.5) - ortho_dir * (width * 0.5) + z_dir * (deep * 0.5) points = [[points[point_id, 0], points[point_id, 1], points[point_id, 2]] for point_id in range(8)] points = np.array(points) lines = [[0, 1], [1, 2], [2, 3], [3, 0], [4, 5], [5, 6], [6, 7], [7, 4], [0, 4], [1, 5], [2, 6], [3, 7]] line_color = [np.array(box_colormap[label_name[type_name]]) for i in range(len(lines))] return points, lines, line_color给这段代码加注释

最新推荐

recommend-type

智能制造的数字化工厂规划qytp.pptx

智能制造的数字化工厂规划qytp.pptx
recommend-type

罗兰贝格:德隆人力资源管理体系gltp.pptx

罗兰贝格:德隆人力资源管理体系gltp.pptx
recommend-type

JAVA3D的网络三维技术的设计与实现.zip

JAVA3D的网络三维技术的设计与实现
recommend-type

setuptools-11.3.1.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依