在X_processed文件夹下有若干个名字以字母s开头的文件夹,每个文件夹中有15张不戴口罩的照片;在X_masked文件夹下有若干个名字以字母s开头的文件夹,每个文件夹中有15张戴口罩的照片,请用python语言写一段程序,读取两个文件夹的照片,并用支持向量机进行训练。训练集和测试集的比例为8:2;对每张照片,提取特征的语句形如:x_feature = ft.hog(x, orientations=8, pixels_per_cell=(10, 10), cells_per_block=(1, 1), visualize=False),其中x是照片。写出代码并解释之

时间: 2024-04-16 10:24:49 浏览: 154
下面是使用Python语言读取两个文件夹中的照片,并使用支持向量机进行训练的代码示例: ```python import os import numpy as np from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import accuracy_score from skimage import feature # 读取不戴口罩的照片 X_unmasked = [] y_unmasked = [] unmasked_folder = "X_processed" for folder_name in os.listdir(unmasked_folder): if folder_name.startswith("s"): folder_path = os.path.join(unmasked_folder, folder_name) for file_name in os.listdir(folder_path): image_path = os.path.join(folder_path, file_name) image = read_image(image_path) # 自定义函数,读取照片并将其转换为合适的格式 x_feature = feature.hog(image, orientations=8, pixels_per_cell=(10, 10), cells_per_block=(1, 1), visualize=False) X_unmasked.append(x_feature) y_unmasked.append(0) # 不戴口罩类别标签为0 # 读取戴口罩的照片 X_masked = [] y_masked = [] masked_folder = "X_masked" for folder_name in os.listdir(masked_folder): if folder_name.startswith("s"): folder_path = os.path.join(masked_folder, folder_name) for file_name in os.listdir(folder_path): image_path = os.path.join(folder_path, file_name) image = read_image(image_path) # 自定义函数,读取照片并将其转换为合适的格式 x_feature = feature.hog(image, orientations=8, pixels_per_cell=(10, 10), cells_per_block=(1, 1), visualize=False) X_masked.append(x_feature) y_masked.append(1) # 戴口罩类别标签为1 # 将特征和标签转换为NumPy数组 X = np.concatenate([X_unmasked, X_masked]) y = np.concatenate([y_unmasked, y_masked]) # 分割训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建并拟合支持向量机模型 svm_model = SVC() svm_model.fit(X_train, y_train) # 在测试集上进行预测 y_pred = svm_model.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) # 输出准确率 print("准确率:", accuracy) ``` 上述代码首先通过循环遍历读取两个文件夹中的照片,并将其转换为特征向量 `x_feature`。在这个示例中,我们使用了 `skimage` 库的 `feature.hog` 函数来提取图像的HOG特征。然后,将特征向量 `x_feature` 添加到相应的列表 `X_unmasked` 或 `X_masked` 中,并为每个照片设置对应的类别标签。在这个示例中,不戴口罩的类别标签为0,戴口罩的类别标签为1。 接下来,将特征向量列表 `X_unmasked` 和 `X_masked` 以及类别标签列表 `y_unmasked` 和 `y_masked` 合并为一个大的特征矩阵 `X` 和一个对应的标签向量 `y`,用于后续的模型训练。 然后,使用 `train_test_split` 函数将数据集划分为训练集和测试集,比例为
阅读全文

相关推荐

请修改这一份代码:import random from sklearn import svm from sklearn.metrics import accuracy_score from skimage.feature import hog # 将X_processed列表按3:2的比例随机划分为"员工"和"陌生人"两个集合 def split_dataset(X_processed): random.shuffle(X_processed) split_index = int(len(X_processed) * 3 / 5) employee_set = X_processed[:split_index] stranger_set = X_processed[split_index:] return employee_set, stranger_set # 使用HOG特征提取进行人脸识别训练 def train_face_recognition(employee_set): X = [] = [] for i, face_images in enumerate(employee_set): for face_image in face_images: feature = hog(face_image, orientations=8, pixels_per_cell=(10, 10), cells_per_block=(1, 1), visualize=False) X.append(feature) y.append(i) # i代表员工的标签 clf = svm.SVC() clf.fit(X, y) return clf # 随机抽取一张图片进行识别 def recognize_random_face(clf, X_processed): random_index = random.randint(0, len(X_processed)-1) random_face_images = X_processed[random_index] random_face_image = random.choice(random_face_images) feature = hog(random_face_image, orientations=8, pixels_per_cell=(10, 10), cells_per_block=(1, 1), visualize=False) prediction = clf.predict([feature]) return prediction[0] == random_index # 示例用法 X_processed = [...] # X_processed列表的具体内容 employee_set, stranger_set = split_dataset(X_processed) clf = train_face_recognition(employee_set) result = recognize_random_face(clf, X_processed) print("识别结果:", result),增加如下功能:如果测试时认为图片不属于员工集中的任何一个员工,prediction应该等于0;“陌生人”集合也应当拥有标签,“陌生人”的标签都是0,代表非员工

大家在看

recommend-type

MOOC工程伦理课后习题答案(主观+判断+选择)期末考试答案.docx

MOOC工程伦理课程,课程讲义以及课后选择题、判断题和主观题习题答案
recommend-type

基于Farrow结构的滤波器频响特性matlab仿真,含仿真操作录像

1.版本:matlab2022a,包含仿真操作录像,操作录像使用windows media player播放。 2.领域:Farrow滤波器。 3.内容:基于Farrow结构的滤波器频响特性matlab仿真 % 得到Farrow结构滤波器的频响特性 for j=1:Nfil x=(j-1)*xinc + 0.0001; % 避免出现sin(0)/0 h = C(Np+1,:); % 由拟合后的子滤波器系数矩阵 for n=1:Np h=h+x^n*C(Np+1-n,:); % 得到子滤波器的系数和矩阵 end h=h/sum(h); % 综合滤波器组的系数矩阵 H = freqz(h,1,wpi); mag(j,:) = abs(H); end plot(w,20*log10(abs(H))); grid on;xlabel('归一化频率');ylabel('幅度'); 4.注意事项:注意MATLAB左侧当前文件夹路径,必须是程序所在文件夹位置,具体可以参考视频录。
recommend-type

电路ESD防护原理与设计实例.pdf

电路ESD防护原理与设计实例,不错的资源,硬件设计参考,相互学习
recommend-type

主生產排程員-SAP主生产排程

主生產排程員 比較實際需求與預測需求,提出預測與MPS的修訂建議。 把預測與訂單資料轉成MPS。 使MPS能配合出貨與庫存預算、行銷計畫、與管理政策。 追蹤MPS階層產品安全庫存的使用、分析MPS項目生產數量和FAS消耗數量之間的差異、將所有的改變資料輸入MPS檔案,以維護MPS。 參加MPS會議、安排議程、事先預想問題、備好可能的解決方案、將可能的衝突搬上檯面。 評估MPS修訂方案。 提供並監控對客戶的交貨承諾。
recommend-type

信息几何-Information Geometry

信息几何是最近几年新的一个研究方向,主要应用于统计分析、控制理论、神经网络、量子力学、信息论等领域。本书为英文版,最为经典。阅读需要一定的英文能力。

最新推荐

recommend-type

仓库管理系统(manager-sys).zip

仓库管理系统(一个毕设) 毕业设计项目《仓库管理系统(manager_sys)》的概述和指南: 项目标题 《基于Spring MVC和Vue.js的仓库管理系统设计与实现 —— 毕业设计项目》 项目概述 本项目是一个基于Spring MVC、Spring Security、Spring、MyBatis、PageHelper和Vue.js框架的仓库管理系统。系统旨在提供高效、安全的库存管理解决方案,包括权限管理、商品管理、订单处理和库存预警等功能。 系统特点 权限管理:利用Spring Security实现基于角色的访问控制(RBAC),动态分配权限。 业务流程:涵盖商品、订单、库存的完整操作流程,确保库存管理的准确性。 日志记录:通过Spring AOP实现操作日志的记录,便于追踪和审计。 数据统计:首页展示商品销量统计图和每日销售统计图,直观展示业务状况。 系统预览 登录和首页:用户登录后进入系统首页,查看统计信息。 产品管理:管理商品信息,包括添加、修改、删除等操作。 订单管理:处理订单,包括创建订单、更新库存等。 权限管理:管理用户角色和权限。 日志管理:查看系统操作日志。 运
recommend-type

Python调试器vardbg:动画可视化算法流程

资源摘要信息:"vardbg是一个专为Python设计的简单调试器和事件探查器,它通过生成程序流程的动画可视化效果,增强了算法学习的直观性和互动性。该工具适用于Python 3.6及以上版本,并且由于使用了f-string特性,它要求用户的Python环境必须是3.6或更高。 vardbg是在2019年Google Code-in竞赛期间为CCExtractor项目开发而创建的,它能够跟踪每个变量及其内容的历史记录,并且还能跟踪容器内的元素(如列表、集合和字典等),以便用户能够深入了解程序的状态变化。" 知识点详细说明: 1. Python调试器(Debugger):调试器是开发过程中用于查找和修复代码错误的工具。 vardbg作为一个Python调试器,它为开发者提供了跟踪代码执行、检查变量状态和控制程序流程的能力。通过运行时监控程序,调试器可以发现程序运行时出现的逻辑错误、语法错误和运行时错误等。 2. 事件探查器(Event Profiler):事件探查器是对程序中的特定事件或操作进行记录和分析的工具。 vardbg作为一个事件探查器,可以监控程序中的关键事件,例如变量值的变化和函数调用等,从而帮助开发者理解和优化代码执行路径。 3. 动画可视化效果:vardbg通过生成程序流程的动画可视化图像,使得算法的执行过程变得生动和直观。这对于学习算法的初学者来说尤其有用,因为可视化手段可以提高他们对算法逻辑的理解,并帮助他们更快地掌握复杂的概念。 4. Python版本兼容性:由于vardbg使用了Python的f-string功能,因此它仅兼容Python 3.6及以上版本。f-string是一种格式化字符串的快捷语法,提供了更清晰和简洁的字符串表达方式。开发者在使用vardbg之前,必须确保他们的Python环境满足版本要求。 5. 项目背景和应用:vardbg是在2019年的Google Code-in竞赛中为CCExtractor项目开发的。Google Code-in是一项面向13到17岁的学生开放的竞赛活动,旨在鼓励他们参与开源项目。CCExtractor是一个用于从DVD、Blu-Ray和视频文件中提取字幕信息的软件。vardbg的开发过程中,该项目不仅为学生提供了一个实际开发经验的机会,也展示了学生对开源软件贡献的可能性。 6. 特定功能介绍: - 跟踪变量历史记录:vardbg能够追踪每个变量在程序执行过程中的历史记录,使得开发者可以查看变量值的任何历史状态,帮助诊断问题所在。 - 容器元素跟踪:vardbg支持跟踪容器类型对象内部元素的变化,包括列表、集合和字典等数据结构。这有助于开发者理解数据结构在算法执行过程中的具体变化情况。 通过上述知识点的详细介绍,可以了解到vardbg作为一个针对Python的调试和探查工具,在提供程序流程动画可视化效果的同时,还通过跟踪变量和容器元素等功能,为Python学习者和开发者提供了强大的支持。它不仅提高了学习算法的效率,也为处理和优化代码提供了强大的辅助功能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命

![【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命](https://docs.plesk.com/en-US/onyx/administrator-guide/images/78798.webp) # 摘要 本文全面探讨了IT设备维保管理的各个方面,从理论基础到实践案例,再到技术革新和未来展望。首先概述了维保计划的重要性,强调了其在延长设备生命周期和提升性能稳定性方面的作用。接着,文中详细论述了维保计划的制定原则,包括预防性维护、设备分类及成本效益分析等。通过分析不同行业的实践案例,本文揭示了成功维保计划的关键因素,并提出了效果评估与改进的策略。随后,探讨了性能监
recommend-type

python爬取网页链接,url = “https://koubei.16888.com/57233/0-0-0-0”

在Python中,使用如`requests`库来发送HTTP请求并抓取网页链接是比较常见的做法。以下是如何使用`requests`和BeautifulSoup库(用于解析HTML)来爬取给定URL上的信息: 首先,确保已安装`requests`和`beautifulsoup4`库,如果未安装可以使用以下命令安装: ```bash pip install requests beautifulsoup4 ``` 然后,你可以编写以下Python脚本来爬取指定URL的内容: ```python import requests from bs4 import BeautifulSoup # 定义要
recommend-type

掌握Web开发:Udacity天气日记项目解析

资源摘要信息: "Udacity-Weather-Journal:Web开发路线的Udacity纳米度-项目2" 知识点: 1. Udacity:Udacity是一个提供在线课程和纳米学位项目的教育平台,涉及IT、数据科学、人工智能、机器学习等众多领域。纳米学位是Udacity提供的一种专业课程认证,通过一系列课程的学习和实践项目,帮助学习者掌握专业技能,并提供就业支持。 2. Web开发路线:Web开发是构建网页和网站的应用程序的过程。学习Web开发通常包括前端开发(涉及HTML、CSS、JavaScript等技术)和后端开发(可能涉及各种服务器端语言和数据库技术)的学习。Web开发路线指的是在学习过程中所遵循的路径和进度安排。 3. 纳米度项目2:在Udacity提供的学习路径中,纳米学位项目通常是实践导向的任务,让学生能够在真实世界的情境中应用所学的知识。这些项目往往需要学生完成一系列具体任务,如开发一个网站、创建一个应用程序等,以此来展示他们所掌握的技能和知识。 4. Udacity-Weather-Journal项目:这个项目听起来是关于创建一个天气日记的Web应用程序。在完成这个项目时,学习者可能需要运用他们关于Web开发的知识,包括前端设计(使用HTML、CSS、Bootstrap等框架设计用户界面),使用JavaScript进行用户交互处理,以及可能的后端开发(如果需要保存用户数据,可能会使用数据库技术如SQLite、MySQL或MongoDB)。 5. 压缩包子文件:这里提到的“压缩包子文件”可能是一个笔误或误解,它可能实际上是指“压缩包文件”(Zip archive)。在文件名称列表中的“Udacity-Weather-journal-master”可能意味着该项目的所有相关文件都被压缩在一个名为“Udacity-Weather-journal-master.zip”的压缩文件中,这通常用于将项目文件归档和传输。 6. 文件名称列表:文件名称列表提供了项目文件的结构概览,它可能包含HTML、CSS、JavaScript文件以及可能的服务器端文件(如Python、Node.js文件等),此外还可能包括项目依赖文件(如package.json、requirements.txt等),以及项目文档和说明。 7. 实际项目开发流程:在开发像Udacity-Weather-Journal这样的项目时,学习者可能需要经历需求分析、设计、编码、测试和部署等阶段。在每个阶段,他们需要应用他们所学的理论知识,并解决在项目开发过程中遇到的实际问题。 8. 技术栈:虽然具体的技术栈未在标题和描述中明确提及,但一个典型的Web开发项目可能涉及的技术包括但不限于HTML5、CSS3、JavaScript(可能使用框架如React.js、Angular.js或Vue.js)、Bootstrap、Node.js、Express.js、数据库技术(如上所述),以及版本控制系统如Git。 9. 学习成果展示:完成这样的项目后,学习者将拥有一个可部署的Web应用程序,以及一个展示他们技术能力的项目案例,这些对于未来的求职和职业发展都是有价值的。 10. 知识点整合:在进行Udacity-Weather-Journal项目时,学习者需要将所学的多个知识点融合在一起,包括前端设计、用户体验、后端逻辑处理、数据存储和检索、以及可能的API调用等。 总结来说,Udacity-Weather-Journal项目是Udacity Web开发纳米学位课程中的一个重要实践环节,它要求学习者运用他们所学到的前端和后端开发技能,完成一个具体的Web应用程序项目。通过完成这样的项目,学习者能够将理论知识转化为实践经验,并为他们未来在IT行业的职业发展打下坚实的基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【文献整理高效法】:ENDNOTE软件实用功能及快捷操作揭秘

![【文献整理高效法】:ENDNOTE软件实用功能及快捷操作揭秘](https://europe1.discourse-cdn.com/endnote/optimized/2X/a/a18b63333c637eb5d6fafb609a4eff7bd46df6b0_2_1024x391.jpeg) # 摘要 本文综合探讨了ENDNOTE在文献整理和管理中的作用及其高效操作技巧。首先介绍了文献整理的重要性和ENDNOTE软件的简介,随后深入解析了ENDNOTE的基本功能,包括文献信息的导入与管理、引用和参考文献的生成,以及文献搜索与数据库集成。接着,本文详细阐述了ENDNOTE的高效操作技巧,涵
recommend-type

在使用SQL创建存储过程时,是否可以在定义输入参数时直接为其赋予初始值?

在使用SQL创建存储过程时,通常可以在定义输入参数时为其赋予初始值。这种做法可以使参数具有默认值,当调用存储过程时,如果没有提供该参数的值,则会使用默认值。以下是一个示例: ```sql CREATE PROCEDURE MyProcedure @Param1 INT = 10, @Param2 NVARCHAR(50) = 'DefaultValue' AS BEGIN -- 存储过程的主体 SELECT @Param1 AS Param1, @Param2 AS Param2 END ``` 在这个示例中,`@Param1`和`@Param2`是输入参数
recommend-type

MySQL 5.5.28 64位数据库软件免费下载

资源摘要信息:"mysql 64位.zip" 知识点: 1. MySQL简介: MySQL是一个流行的关系型数据库管理系统(RDBMS),由瑞典MySQL AB公司开发,目前被Oracle公司所拥有。它使用结构化查询语言(SQL)进行数据库管理,是基于客户端-服务器模型的数据库系统,能够处理拥有上千万条记录的大型数据库。 2. MySQL版本: 标题中提到的“mysql 5.5.28版本”指的是MySQL数据库管理系统的一个具体版本。每个版本号由主版本号、次版本号和修订号组成,通常表示该版本在功能、性能以及稳定性等方面相对于前一个版本的改进。在这个案例中,5.5代表主版本号,28代表修订号。 3. 64位版本: "64位"指的是软件运行所需的操作系统和处理器支持的位数。64位系统比32位系统能够处理更大的内存和更复杂的应用程序。因此,如果一个软件提供64位版本,则意味着它可以充分利用64位系统的优势,提高程序运行的效率和稳定性。 4. Windows系统: "Windows系统"指的是微软公司开发的一系列操作系统,其中包括家庭用户广泛使用的Windows XP、Windows 7、Windows 8和Windows 10等。MySQL 5.5.28 64位版本专门为Windows操作系统设计,确保了用户在使用Windows系统时的兼容性和运行效率。 5. 免费开源: MySQL是一个开源软件,遵循GPL(GNU通用公共许可证),这意味着任何人都可以免费下载、使用、修改和重新分发MySQL。开源特性使得MySQL社区活跃,不断有开发者为其贡献代码,增强了MySQL的功能和稳定性。 6. 数据库存储: MySQL的最主要功能是数据存储和管理。作为关系型数据库,它将数据存储在表格中,表格之间通过主键和外键进行关联。MySQL支持多种数据类型,例如整型、浮点型、字符型、日期时间型等。通过SQL语句,用户可以创建、查询、更新和删除数据库中的记录。 7. 下载使用: 资源标题中提到“欢迎下载使用”,意味着用户可以免费获取这个MySQL版本。用户可以通过官方网站或其他提供该软件的站点进行下载。下载安装后,用户需要配置数据库环境,然后才能进行数据库设计、开发和管理等工作。 综上所述,该资源为64位版本的MySQL 5.5.28,专为Windows系统设计,用户可以免费下载使用。它是一个功能强大的数据库管理系统,适用于数据存储和管理,尤其适合处理大量数据的场合。用户下载安装该资源后,可以开始使用MySQL提供的丰富功能,包括创建数据库、设计表结构、进行数据查询和维护等操作。