二叉树期权定价python
时间: 2023-10-05 13:05:38 浏览: 142
期权的二叉树定价模型.ipynb
5星 · 资源好评率100%
二叉树期权定价是一种常用的数值方法,可以用来估计期权的价格。在Python中,可以使用二叉树模型来实现期权定价。下面是一个示例的Python代码:
```python
import numpy as np
def tree_option(S, X, r, sigma, t, steps):
u = np.exp(sigma * np.sqrt(t / steps))
d = 1 / u
P = (np.exp(r * t / steps) - d) / (u - d)
prices = np.zeros(steps + 1)
c_values = np.zeros(steps + 1)
prices\[0\] = S * d ** steps
c_values\[0\] = np.maximum(prices\[0\] - X, 0)
for i in range(1, steps + 1):
prices\[i\] = prices\[i - 1\] * (u ** 2)
c_values\[i\] = np.maximum(prices\[i\] - X, 0)
for j in range(steps, 0, -1):
for i in range(0, j):
c_values\[i\] = (P * c_values\[i + 1\] + (1 - P) * c_values\[i\]) / np.exp(r * t / steps)
return c_values\[0\]
```
这段代码使用了欧式期权的二叉树定价方法,其中S是标的资产价格,X是行权价格,r是无风险利率,sigma是标的资产的波动率,t是期权的剩余时间,steps是二叉树的步数。函数返回的是期权的价格。
请注意,这只是一个简单的示例代码,实际应用中可能需要根据具体的需求进行修改和扩展。引用\[1\]提供了一个完整的二叉树期权定价的Python代码,你可以参考该代码进行更详细的了解和实践。
#### 引用[.reference_title]
- *1* [(三十九)期权定价的二叉树法](https://blog.csdn.net/hzk427/article/details/104614876)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [python解zuobiaoxi方程_【定价】二叉树(CRR)欧式/美式期权定价的原理及Python实现...](https://blog.csdn.net/weixin_39785814/article/details/109918446)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [期权定价的数值方法之二项式期权定价模型【附pyrhon代码】](https://blog.csdn.net/xiaowu1997/article/details/121730380)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文