如何通过两个三维坐标计算欧拉角(Z-X-Z)
时间: 2024-01-31 17:02:02 浏览: 639
要通过两个三维坐标计算 Z-X-Z 欧拉角,你需要使用适当的数学公式。假设你有两个三维坐标分别为 `p1 = (x1, y1, z1)` 和 `p2 = (x2, y2, z2)`。以下是计算 Z-X-Z 欧拉角的步骤:
1. 首先,计算两个坐标的差值:`d = (x2 - x1, y2 - y1, z2 - z1)`。
2. 计算第一个绕 Z 轴旋转的角度(yaw):`yaw = atan2(d[1], d[0])`。
3. 计算第一个旋转后的新坐标差值:`d_rotated_1 = (cos(yaw)*d[0] + sin(yaw)*d[1], -sin(yaw)*d[0] + cos(yaw)*d[1], d[2])`。
4. 计算第二个绕 X 轴旋转的角度(pitch):`pitch = atan2(d_rotated_1[2], d_rotated_1[0])`。
5. 计算第二个旋转后的新坐标差值:`d_rotated_2 = (cos(pitch)*d_rotated_1[0] + sin(pitch)*d_rotated_1[2], d_rotated_1[1], -sin(pitch)*d_rotated_1[0] + cos(pitch)*d_rotated_1[2])`。
6. 计算第三个绕 Z 轴旋转的角度(roll):`roll = atan2(d_rotated_2[1], d_rotated_2[0])`。
在这个方法中,我们使用了 `atan2` 函数来计算角度值,并使用 `sin` 和 `cos` 函数来执行旋转操作。请注意,结果的单位是弧度。如果你需要将结果转换为度数,可以使用 `math.degrees()` 函数来进行转换。
下面是一个示例代码,展示了如何计算两个三维坐标的 Z-X-Z 欧拉角:
```python
import math
p1 = (1, 2, 3)
p2 = (4, 5, 6)
d = (p2[0] - p1[0], p2[1] - p1[1], p2[2] - p1[2])
yaw = math.atan2(d[1], d[0])
d_rotated_1 = (math.cos(yaw)*d[0] + math.sin(yaw)*d[1], -math.sin(yaw)*d[0] + math.cos(yaw)*d[1], d[2])
pitch = math.atan2(d_rotated_1[2], d_rotated_1[0])
d_rotated_2 = (math.cos(pitch)*d_rotated_1[0] + math.sin(pitch)*d_rotated_1[2], d_rotated_1[1], -math.sin(pitch)*d_rotated_1[0] + math.cos(pitch)*d_rotated_1[2])
roll = math.atan2(d_rotated_2[1], d_rotated_2[0])
yaw_degrees = math.degrees(yaw)
pitch_degrees = math.degrees(pitch)
roll_degrees = math.degrees(roll)
print("Yaw:", yaw_degrees)
print("Pitch:", pitch_degrees)
print("Roll:", roll_degrees)
```
在这个示例中,我们计算了两个三维坐标的 Z-X-Z 欧拉角,并将结果以度数的形式打印出来。你可以将 `p1` 和 `p2` 替换为你自己的坐标点。
阅读全文