transformer gan
时间: 2023-08-30 22:05:35 浏览: 226
transGAN-transformer替代cnn的1
Transformer GAN是指使用Transformer模型作为生成对抗网络(GAN)的一部分。GAN是一种机器学习模型,由两个部分组成:生成器和判别器。生成器负责生成逼真的样本,而判别器则负责判断这些样本是真实的还是生成的。传统的GAN通常使用卷积神经网络作为生成器和判别器的基础网络结构。
而Transformer GAN则将Transformer模型应用于GAN中。Transformer是一种自注意力机制的神经网络模型,最初被提出用于机器翻译任务。它通过自注意力机制来建模序列之间的依赖关系,而无需使用卷积或循环结构。Transformer模型在自然语言处理任务中取得了巨大的成功,并且也被应用到图像生成和处理任务中。
其中一篇相关的论文是"TransGAN: Two Transformers Can Make One Strong GAN",作者单位为UT-Austin和IBM研究院。这篇论文提出了一种使用两个Transformer模型组合成一个强大的GAN的方法。你可以在他们的GitHub仓库中找到相关的代码和论文链接。
另外,你可以参考《The Annotated Transformer》这本书的翻译,书中提供了对Transformer模型的详细注释和代码实现。这本书可以帮助你更好地理解Transformer模型的原理和应用。
总之,Transformer GAN是将Transformer模型应用于生成对抗网络的一种方法,它在图像生成和处理任务中具有潜力,并且有相关的代码和论文供参考。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [没有卷积!TransGAN:首个基于纯Transformer的GAN网络](https://blog.csdn.net/amusi1994/article/details/113838735)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *3* [李沐论文精读系列一: ResNet、Transformer、GAN、BERT](https://blog.csdn.net/qq_56591814/article/details/127313216)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文