AttributeError: 'DataFrame' object has no attribute 'data'. Did you mean: '_data'? <class 'pandas.core.frame.DataFrame'>
时间: 2023-11-02 07:02:07 浏览: 134
AttributeError: 'DataFrame' object has no attribute 'data'. Did you mean: '_data'? 这个错误是由于在使用DataFrame对象的属性时出现了错误。根据提供的引用内容,有以下解决方案:1. 错误原因是使用了已过期的ix属性,可以尝试使用loc或iloc属性来替代。2. 可以检查pandas的版本是否过低,如果是的话可以考虑升级pandas到最新版本。3. 可以检查是否导入了pandas库,或者是否正确地导入了pandas库。请根据具体情况尝试以上解决方案。
相关问题
AttributeError: DataFrame object has no attribute append . Did you mean: _append ?
This error occurs when you try to call the `append` method on a Pandas DataFrame object, but the object does not have an `append` attribute.
One possible reason for this error is that you are trying to append a DataFrame to another DataFrame using the `append` method, but you are not using it correctly. In Pandas, the `append` method does not modify the original DataFrame, but instead it returns a new DataFrame that contains the rows from both DataFrames. Therefore, you need to assign the result of the `append` method to a new variable or to the original DataFrame, like this:
```
df1 = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
df2 = pd.DataFrame({'A': [5, 6], 'B': [7, 8]})
df3 = df1.append(df2)
```
In this example, `df3` will contain the rows from both `df1` and `df2`.
If you are still getting the AttributeError, it's possible that the DataFrame object you are trying to append to does not have an `append` attribute. In this case, you can try using the `_append` attribute instead, which is a private method that is used internally by Pandas. However, be aware that using private methods may not be supported in future versions of Pandas and may cause unexpected behavior.
```
df1._append(df2)
```
AttributeError: 'DataFrame' object has no attribute 'data'. Did you mean: '_data'?
对不起,我在代码示例中犯了一个错误。波士顿房价数据集不是一个DataFrame对象,而是一个Bunch对象,因此没有`data`属性。我会修正这个错误,将数据集加载和划分的代码修改如下:
```python
import numpy as np
import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Ridge
from sklearn.neural_network import MLPRegressor
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import matplotlib.pyplot as plt
# 加载波士顿房价数据集
boston = load_boston()
X = boston.data
y = boston.target
# 数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 特征归一化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```
非常抱歉给您带来了困惑!
阅读全文