tf.variable函数的作用
时间: 2023-11-24 12:07:41 浏览: 75
tf.variable函数的作用是创建一个可训练的变量。在机器学习中,我们经常需要优化模型中的参数,这些参数需要被反向传播算法更新。tf.variable函数可以将参数保存为变量对象,并且这些变量对象可以在训练过程中被优化。
tf.variable函数的用法如下:
```
tf.Variable(initial_value, trainable=True, name=None, dtype=None, ...)
```
其中,initial_value是变量的初始值,trainable指定变量是否可训练(默认为True),name指定变量的名称,dtype指定变量的数据类型(默认根据initial_value推断)等。
通过tf.Variable函数创建的变量可以使用.assign()方法来更新其值,同时会自动跟踪梯度信息以支持反向传播算法的优化过程。
总而言之,tf.variable函数的作用是创建一个可训练的变量,用于保存模型中需要被优化更新的参数。
相关问题
# 设置输入层节点数、隐层节点数 in_nodes=784 h1_nodes=100 h2_nodes=100 h3_nodes=50 # 定义输入、输出、prob的placeholder x=tf.placeholder(tf.float32,[None,in_nodes]) y_=tf.placeholder(tf.float32,[None,10]) prob=tf.placeholder(tf.float32) # 设置第一隐层 w1=weight(in_nodes, h1_nodes, 0.1, 0.005) b1=tf.Variable(tf.zeros([h1_nodes])) h1=tf.nn.relu(tf.matmul(x,w1)+b1) # 设置第二隐层 w2=weight(h1_nodes, h2_nodes, 0.1, 0.0) b2=tf.Variable(tf.zeros([h2_nodes])) h2=tf.nn.relu(tf.matmul(h1,w2)+b2) h2_drop=tf.nn.dropout(h2, prob) # 设置第三隐层 w3=weight(h2_nodes, h3_nodes, 0.1, 0.0) b3=tf.Variable(tf.zeros([h3_nodes])) h3=tf.nn.relu(tf.matmul(h2_drop,w3)+b3) h3_drop=tf.nn.dropout(h3, prob) # 设置softmax输出层 w4=weight(h3_nodes, 10, 0.1, 0.0) b4=tf.Variable(tf.zeros([10])) y=tf.nn.softmax(tf.matmul(h3_drop,w4)+b4)
将上述代码改写成 TensorFlow 2.x 版本的代码如下:
```python
import tensorflow as tf
def weight(shape, stddev, wd):
initial = tf.random.truncated_normal(shape, stddev=stddev)
var = tf.Variable(initial)
if wd is not None:
weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
class MyModel(tf.keras.Model):
def __init__(self, in_nodes=784, h1_nodes=100, h2_nodes=100, h3_nodes=50):
super(MyModel, self).__init__()
self.w1 = weight([in_nodes, h1_nodes], 0.1, 0.005)
self.b1 = tf.Variable(tf.zeros([h1_nodes]))
self.w2 = weight([h1_nodes, h2_nodes], 0.1, 0.0)
self.b2 = tf.Variable(tf.zeros([h2_nodes]))
self.w3 = weight([h2_nodes, h3_nodes], 0.1, 0.0)
self.b3 = tf.Variable(tf.zeros([h3_nodes]))
self.w4 = weight([h3_nodes, 10], 0.1, 0.0)
self.b4 = tf.Variable(tf.zeros([10]))
def call(self, inputs, prob):
x = inputs
y_ = tf.cast(inputs, tf.float32)
h1 = tf.nn.relu(tf.matmul(x, self.w1) + self.b1)
h2 = tf.nn.relu(tf.matmul(h1, self.w2) + self.b2)
h2_drop = tf.nn.dropout(h2, rate=prob)
h3 = tf.nn.relu(tf.matmul(h2_drop, self.w3) + self.b3)
h3_drop = tf.nn.dropout(h3, rate=prob)
y = tf.nn.softmax(tf.matmul(h3_drop, self.w4) + self.b4)
return y
model = MyModel()
x = tf.keras.Input(shape=(None, 784))
prob = tf.keras.Input(shape=())
y = model(x, prob)
y_ = tf.keras.Input(shape=(None, 10))
# 定义损失函数
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.math.log(y), reduction_indices=[1]))
tf.add_to_collection('losses', cross_entropy)
loss = tf.add_n(tf.get_collection('losses'))
# 定义优化器
train_step = tf.train.AdamOptimizer(1e-4).minimize(loss)
# 训练模型
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys, prob: 0.5})
```
在 TensorFlow 2.x 中,可以使用 `tf.reduce_mean` 和 `tf.reduce_sum` 函数来计算张量的平均值和总和;使用 `tf.math.log` 函数来计算张量的自然对数。此外,可以使用 `tf.train.AdamOptimizer` 来定义优化器,使用 `model.trainable_variables` 来获取所有可训练的变量。
在嵌入层使用PGD生成扰动样本,嵌入层代码如下: self.delta_U = tf.Variable( tf.compat.v1.truncated_normal(shape=[self.num_users, self.embedding_size], mean=0.0, stddev=0.01)) self.delta_I = tf.Variable( tf.compat.v1.truncated_normal(shape=[self.num_items, self.embedding_size], mean=0.0, stddev=0.01)) self.delta_Tu = tf.Variable( tf.compat.v1.truncated_normal(shape=[self.num_tags, self.embedding_size], mean=0.0, stddev=0.01))
好的,可以通过修改嵌入层的代码来实现在嵌入层使用PGD生成扰动样本。具体步骤如下:
1.首先定义一个PGD攻击函数,输入为原始数据和标签,输出为扰动后的数据。
```python
import tensorflow as tf
def pgd_attack(model, x, y, eps, alpha, iters):
"""
PGD攻击函数
"""
# 生成一个与x相同维度的随机扰动
delta = tf.random.uniform(tf.shape(x), -eps, eps)
# 对扰动进行裁剪,保证其在L infinity范数内
delta = tf.clip_by_value(delta, -eps, eps)
for i in range(iters):
# 带扰动的数据
x_adv = x + delta
# 对x_adv进行前向传播,计算损失函数
with tf.GradientTape() as tape:
tape.watch(x_adv)
y_pred = model(x_adv)
loss = tf.keras.losses.sparse_categorical_crossentropy(y, y_pred)
# 对损失函数进行反向传播,计算扰动的梯度
grad = tape.gradient(loss, x_adv)
# 使用FGSM方法对扰动进行更新
delta = tf.clip_by_value(delta + alpha * tf.sign(grad), -eps, eps)
delta = tf.clip_by_value(delta, -eps, eps)
x_adv = x + delta
return x_adv
```
2.对嵌入层进行修改,加入PGD攻击的扰动项。
```python
class Model(tf.keras.Model):
def __init__(self, num_users, num_items, num_tags, embedding_size):
super(Model, self).__init__()
self.num_users = num_users
self.num_items = num_items
self.num_tags = num_tags
self.embedding_size = embedding_size
# 定义嵌入层
self.embedding_U = tf.keras.layers.Embedding(num_users, embedding_size)
self.embedding_I = tf.keras.layers.Embedding(num_items, embedding_size)
self.embedding_Tu = tf.keras.layers.Embedding(num_tags, embedding_size)
# 定义带扰动的嵌入层
self.delta_U = tf.Variable(tf.compat.v1.truncated_normal(shape=[num_users, embedding_size], mean=0.0, stddev=0.01))
self.delta_I = tf.Variable(tf.compat.v1.truncated_normal(shape=[num_items, embedding_size], mean=0.0, stddev=0.01))
self.delta_Tu = tf.Variable(tf.compat.v1.truncated_normal(shape=[num_tags, embedding_size], mean=0.0, stddev=0.01))
def call(self, inputs):
# 解析输入数据
user_id, item_id, tag_id = inputs
# 进行嵌入
emb_U = self.embedding_U(user_id)
emb_I = self.embedding_I(item_id)
emb_Tu = self.embedding_Tu(tag_id)
# 加入扰动
emb_U = emb_U + self.delta_U[user_id]
emb_I = emb_I + self.delta_I[item_id]
emb_Tu = emb_Tu + self.delta_Tu[tag_id]
# 拼接嵌入向量
emb = tf.concat([emb_U, emb_I, emb_Tu], axis=1)
# 对嵌入向量进行全连接层计算
logits = self.fc(emb)
return logits
```
在上述代码中,我们加入了三个带扰动的嵌入层`self.delta_U`、`self.delta_I`、`self.delta_Tu`,并且在每次前向传播时,将扰动项加到对应的嵌入向量上。
3.对原有的训练代码进行修改,调用PGD攻击函数进行扰动。
```python
# 定义PGD攻击函数的参数
eps = 0.1
alpha = 0.01
iters = 10
# 进行PGD攻击
x_adv = pgd_attack(model, x, y, eps, alpha, iters)
# 将扰动后的数据输入模型进行训练
with tf.GradientTape() as tape:
y_pred = model(x_adv)
loss = tf.keras.losses.sparse_categorical_crossentropy(y, y_pred)
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
```
在上述代码中,我们首先调用PGD攻击函数`pgd_attack`,生成扰动样本`x_adv`。然后将扰动后的数据输入模型进行训练,计算损失函数并进行反向传播,最后更新模型参数。
这样就完成了在嵌入层使用PGD生成扰动样本的过程。
阅读全文