ResNet是什么?
时间: 2024-05-06 14:13:40 浏览: 94
ResNet报告(ResNet 网络是在 2015年 由微软实验室中的何凯明等几位大神提出,斩获当年ImageNet竞赛中分类)
ResNet(Residual Network)是一种深度卷积神经网络架构,由微软研究院提出。它通过引入残差连接(residual connection)来解决深层网络训练过程中的梯度消失和梯度爆炸问题,使得网络可以更深更容易训练。
在传统的卷积神经网络中,每个网络层都会对输入进行变换,而残差网络则引入了跳跃连接,将输入直接添加到输出中,形成了残差块。这样做的好处是,即使网络层数增加,也能保持较好的性能。通过残差连接,网络可以学习到残差函数,即输入与输出之间的差异,从而更好地适应复杂的数据分布。
ResNet的核心思想是通过残差块来构建深层网络,其中每个残差块由多个卷积层组成。此外,为了减小特征图的尺寸,ResNet还引入了池化层和步长卷积层。通过堆叠多个残差块,可以构建非常深的网络,如ResNet-50、ResNet-101和ResNet-152等。
阅读全文