ubuntu18.04深度学习环境

时间: 2023-07-30 08:11:10 浏览: 127
Ubuntu 18.04深度学习环境搭建需要以下步骤: 1. 安装CUDA和cuDNN:CUDA是NVIDIA提供的用于GPU加速的并行计算平台,cuDNN是NVIDIA提供的用于深度学习的GPU加速库。可以从NVIDIA官网下载对应版本的CUDA和cuDNN,并按照官方文档进行安装。 2. 安装Anaconda:Anaconda是一个Python发行版,包含了许多常用的科学计算库和工具。可以从Anaconda官网下载对应版本的安装包,并按照官方文档进行安装。 3. 创建虚拟环境:可以使用conda命令创建一个新的虚拟环境,例如: ``` conda create --name env_name python=3.6 ``` 这将创建一个名为env_name的虚拟环境,并安装Python 3.6。 4. 安装深度学习框架:可以使用conda命令安装常用的深度学习框架,例如TensorFlow、PyTorch、Keras等,例如: ``` conda install tensorflow-gpu ``` 这将安装TensorFlow GPU版本。 5. 安装其他依赖库:根据需要安装其他依赖库,例如numpy、scipy、matplotlib等。 完成以上步骤后,就可以在虚拟环境中进行深度学习开发了。
相关问题

ubuntu18.04深度学习环境配置

### 回答1: Ubuntu 18.04深度学习环境配置需要以下步骤: 1. 安装CUDA和cuDNN:CUDA是NVIDIA的GPU加速计算平台,cuDNN是深度神经网络库。首先需要安装CUDA,然后再安装cuDNN。具体安装步骤可以参考官方文档。 2. 安装Python和相关库:Ubuntu 18.04自带Python 3,可以使用apt-get命令安装Python相关库,如numpy、scipy、matplotlib等。 3. 安装深度学习框架:常用的深度学习框架有TensorFlow、PyTorch、Keras等。可以使用pip命令安装。 4. 配置环境变量:需要将CUDA和cuDNN的路径添加到环境变量中,以便深度学习框架能够正确地使用GPU加速。 5. 测试环境:可以使用简单的深度学习模型测试环境是否配置成功。 以上是Ubuntu 18.04深度学习环境配置的基本步骤,具体操作可以参考相关文档和教程。 ### 回答2: Ubuntu18.04是许多深度学习爱好者所喜欢的一种操作系统。Ubuntu18.04不仅稳定可靠,还提供了许多强大的开发工具和编程环境。以下是一些要点和步骤,供您在Ubuntu18.04中配置深度学习环境。 1. 安装Ubuntu18.04 在Ubuntu18.04上安装深度学习环境之前,您需要首先安装Ubuntu18.04操作系统。您可以通过官方网站下载Ubuntu18.04的iso文件,然后将其写入可引导的USB驱动器。 2. 安装NVIDIA驱动程序 NVIDIA驱动程序是深度学习环境配置中最重要的部分,因为它可以提供针对NVIDIA GPU的支持。如何安装NVIDIA驱动程序取决于您的显卡型号。您可以通过以下命令来检查您的显卡型号: $ lspci | grep -i nvidia 如果您的显卡型号是NVIDIA Tesla V100,则可以通过以下命令来下载最新的NVIDIA驱动程序: $ wget http://us.download.nvidia.com/tesla/410.72/nvidia-diag-driver-local-repo-ubuntu1804-410.72_1.0-1_amd64.deb 在安装NVIDIA驱动程序之前,您需要卸载之前安装的任何旧版驱动程序。卸载的命令如下: $ sudo apt-get purge nvidia* 安装新的NVIDIA驱动程序: $ sudo dpkg -i nvidia-diag-driver-local-repo-ubuntu1804-410.72_1.0-1_amd64.deb $ sudo apt-key add /var/nvidia-diag-driver-local-repo-410.72/7fa2af80.pub $ sudo apt-get update $ sudo apt-get install cuda-drivers 3. 安装CUDA和cuDNN 安装了NVIDIA驱动程序后,您可以安装CUDA和cuDNN。CUDA可以为您提供各种各样的计算和优化库,用于构建深度学习模型。cuDNN是一个加速深度神经网络的库。以下是安装CUDA的步骤: $ wget https://developer.nvidia.com/compute/cuda/10.0/Prod/local_installers/cuda-repo-ubuntu1804-10-0-local-10.0.130-410.48_1.0-1_amd64 $ sudo dpkg -i cuda-repo-ubuntu1804-10-0-local-10.0.130-410.48_1.0-1_amd64.deb $ sudo apt-key add /var/cuda-repo-10-0-local-10.0.130-410.48/7fa2af80.pub $ sudo apt-get update $ sudo apt-get install cuda 安装cuDNN: $ tar -xzvf cudnn-9.0-linux-x64-v7.tgz $ sudo cp -P cuda/include/cudnn.h /usr/local/cuda-9.0/include $ sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda-9.0/lib64/ $ sudo chmod a+r /usr/local/cuda-9.0/include/cudnn.h /usr/local/cuda-9.0/lib64/libcudnn* 4. 安装Python和深度学习框架 Python是深度学习环境中使用的主要编程语言。您可以使用以下命令安装Python3: $ sudo apt-get install python3 深度学习框架是实现深度学习算法和模型的库。许多流行的深度学习框架,例如TensorFlow、PyTorch和Keras,都可以在Ubuntu18.04上进行安装和配置。以下是安装TensorFlow的步骤: $ sudo apt-get install python3-pip python3-dev python-virtualenv $ virtualenv --system-site-packages tensorflow $ source tensorflow/bin/activate (tensorflow) $ pip install --upgrade pip (tensorflow) $ pip install --user tensorflow-gpu 5. 训练深度学习模型 当您完成深度学习环境的配置后,可以开始训练深度学习模型。您可以使用自己的数据集或公共数据集来训练模型。以下是使用TensorFlow训练模型的示例代码: import tensorflow as tf from tensorflow import keras (train_images, train_labels), (test_images, test_labels) = keras.datasets.mnist.load_data() train_images = train_images.astype('float32') / 255 test_images = test_images.astype('float32') / 255 model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(train_images, train_labels, epochs=5) 您可以通过运行该命令训练模型: (tensorflow) $ python train_model.py 在完成训练后,您可以通过以下命令保存模型: model.save('my_model.h5') 6. 总结 Ubuntu18.04是一种出色的操作系统,适用于深度学习环境的配置。在配置深度学习环境之前,您需要安装NVIDIA驱动程序、CUDA和cuDNN。然后,您可以安装Python和深度学习框架,例如TensorFlow。在配置完环境之后,您可以使用您自己的数据或公共数据集训练深度学习模型。 ### 回答3: Ubuntu 18.04 作为当前最流行的开源操作系统,广泛应用于深度学习领域。它提供了很好的性能和稳定性,同时也支持广泛的深度学习框架和工具库,如 Keras、TensorFlow、PyTorch 和 OpenCV 等。下面是配置 Ubuntu 18.04 深度学习环境的基本步骤: 1. 确保 Ubuntu 18.04 正确安装和升级: 首先,确保 Ubuntu 18.04 正确安装和升级到最新版本。您可以使用以下命令升级您的操作系统: sudo apt-get update sudo apt-get upgrade 2. 安装 Anaconda 3: Anaconda 是一个广泛使用的 Python 数据科学和机器学习平台,它为用户提供了方便的包管理和环境管理工具。您可以使用以下命令下载并安装 Anaconda: wget https://repo.anaconda.com/archive/Anaconda3-2019.07-Linux-x86_64.sh bash Anaconda3-2019.07-Linux-x86_64.sh 在安装过程中,按照屏幕上的提示进行操作。一旦安装完成,您需要从终端中运行以下命令将 Anaconda 添加到系统路径: export PATH=/root/anaconda3/bin:$PATH 3. 安装深度学习框架: 安装深度学习框架需要在 Anaconda 中创建一个新的虚拟环境,并安装相应的包,例如 TensorFlow 或 PyTorch。以下是以 TensorFlow 为例的样例代码: conda create -n tensorflow python=3.6 conda activate tensorflow conda install tensorflow-gpu 用类似的方式可以安装其他深度学习框架,如 PyTorch 等。 4. 安装和配置 GPU 驱动程序: 如果您的系统安装了 GPU,则需要安装相应的 GPU 驱动程序和 CUDA 工具包以获得更好的性能。以下是安装 GPU 驱动程序和 CUDA 工具包的样例代码: sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt-get update sudo apt-get install nvidia-driver-430 sudo apt install nvidia-cuda-toolkit 5. 安装图像处理库: 在深度学习中需要加载和处理图像,在 Ubuntu18.04 中可用的图像处理库包括 OpenCV 和 Pillow。以下是样例代码: conda install opencv conda install Pillow 在完成这些步骤之后,您的 Ubuntu 18.04 系统就具备了基本的深度学习环境。您可以按照框架和工具库的具体要求进行配置和设置,以进行更高级的深度学习任务。

ubuntu18.04深度学习环境搭建

### 回答1: Ubuntu 18.04深度学习环境搭建需要以下步骤: 1. 安装CUDA和cuDNN:CUDA是NVIDIA提供的用于GPU加速的并行计算平台,cuDNN是NVIDIA提供的用于深度学习的GPU加速库。可以从NVIDIA官网下载对应版本的CUDA和cuDNN,并按照官方文档进行安装。 2. 安装Anaconda:Anaconda是一个Python发行版,包含了许多常用的科学计算库和工具。可以从Anaconda官网下载对应版本的安装包,并按照官方文档进行安装。 3. 创建虚拟环境:可以使用conda命令创建一个新的虚拟环境,例如: ``` conda create --name env_name python=3.6 ``` 这将创建一个名为env_name的虚拟环境,并安装Python 3.6。 4. 安装深度学习框架:可以使用conda命令安装常用的深度学习框架,例如TensorFlow、PyTorch、Keras等,例如: ``` conda install tensorflow-gpu ``` 这将安装TensorFlow GPU版本。 5. 安装其他依赖库:根据需要安装其他依赖库,例如numpy、scipy、matplotlib等。 完成以上步骤后,就可以在虚拟环境中进行深度学习开发了。 ### 回答2: Ubuntu 18.04是一种非常优秀的开源操作系统,尤其适用于深度学习的环境搭建。在本文中,我们将为大家详细介绍在Ubuntu 18.04上如何搭建深度学习环境。 首先,我们需要安装Ubuntu 18.04操作系统。我们建议下载官方镜像进行安装。 安装完毕后,我们需要安装CUDA(NVIDIA计算统一设备架构)和cuDNN(NVIDIA深度神经网络)。以下是安装步骤: 1. 安装Cuda Toolkit 我们可以通过官网直接下载tar文件进行安装: $ wget https://developer.download.nvidia.com/compute/cuda/10.0/secure/Prod/local_installers/cuda_10.0.130_410.48_linux.run $ sudo sh cuda_10.0.130_410.48_linux.run 在安装过程中会有多项选择,我们建议选择默认选项并自定义CUDA的安装位置。 安装完成后,我们需要将CUDA添加到环境变量中。打开终端,运行以下命令: $ sudo gedit ~/.bashrc 在打开的文件的末尾添加以下代码: export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH 保存文件,然后运行以下命令以使配置生效: $ source ~/.bashrc 2. 安装cuDNN cuDNN是用于加速深度学习的库,我们可以在NVIDIA的官网上下载。请注意,您需要注册才能下载库。 下载后将压缩包解压缩,并将文件复制到CUDA的安装目录中: $ tar -xzvf cudnn-10.0-linux-x64-v7.4.2.24.tgz $ cd cuda $ sudo cp include/cudnn.h /usr/local/cuda/include $ sudo cp lib64/libcudnn* /usr/local/cuda/lib64 $ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn* 3. 安装Anaconda Anaconda是一个强大的Python包管理器,可以轻松管理Python和相关库的版本。我们可以通过官方网站下载并安装Anaconda。 安装完成后,打开终端,输入以下命令以检查是否安装成功: $ conda list 如果显示了安装包列表,则说明安装成功。 4. 创建虚拟环境 为了避免不同的Python库版本之间的冲突,我们建议使用虚拟环境进行开发。使用以下命令创建一个名为env的虚拟环境: $ conda create -n env python=3.7 此命令将创建一个名为env的虚拟环境,并将Python版本设置为3.7。 5. 安装所需的Python库 安装深度学习需要的Python库非常重要,以下是必要库的清单: $ conda install -n env numpy matplotlib pandas jupyter scikit-learn tensorflow-gpu keras 请注意,虽然我们使用了tensorflow-gpu库,但这意味着你需要一张NVIDIA GPU显卡并正确设置CUDA和cuDNN。 如果您的电脑没有NVIDIA GPU显卡,则不需要安装tensorflow-gpu库。 6. 使用Jupyter Jupyter是一个非常好的交互式开发环境,我们建议在虚拟环境中安装jupyter。输入以下命令: $ conda install -n env jupyter 然后输入以下命令启动jupyter: $ jupyter notebook 最后,您将能够成功地在Ubuntu 18.04上搭建深度学习环境并开始进行深度学习开发。 ### 回答3: 深度学习是当今热门的领域之一,如果要在Ubuntu 18.04上搭建深度学习环境,需要以下几个步骤: 1. 安装 NVIDIA 显卡驱动 要在Ubuntu上使用深度学习,必须安装视频和GPU驱动程序。相比于CPU,在GPU上训练深度学习模型要快很多,因此推荐使用Nvidia GPU。 首先你需要下载并安装NVIDIA的驱动程序,可以使用下面的命令查看可用的版本: ``` ubuntu-drivers devices ``` 选择最新版本的驱动程序(如果你的GPU是较旧的版本,可以考虑选择旧版本的驱动程序)并安装: ``` sudo apt install nvidia-driver-<version> ``` 2. 安装CUDA和cuDNN CUDA和cuDNN是与NVIDIA GPU兼容的深度学习框架。CUDA为GPU提供并行计算解决方案,cuDNN用于优化深度学习模型的性能。 可以使用以下命令安装CUDA: ``` sudo apt install nvidia-cuda-toolkit ``` 对于cuDNN,需要先从Nvidia开发者网站下载相对应的cuDNN版本,解压并将文件复制到/usr/local/cuda/路径下: ``` sudo cp <path_to_downloaded_file>/libcudnn* /usr/local/cuda/include/ sudo cp <path_to_downloaded_file>/libcudnn* /usr/local/cuda/lib64/ ``` 3. 配置Anaconda Anaconda是一个包含许多用于深度学习的科学计算库的平台,因此我们需要安装Anaconda。 首先从Anaconda官网下载适用于Ubuntu的Anaconda安装包,然后运行以下命令来安装: ``` bash Anaconda<version>-Linux-x86_64.sh ``` 4. 创建虚拟环境 为了保持深度学习环境的干净和整洁,我们将在Anaconda上创建虚拟环境并在其中安装所有必要的包。 使用以下命令创建具有Python3的新虚拟环境: ``` conda create --name <env_name> python=3.6 ``` 处于安全起见,我们建议使用Python3.6来进行深度学习。 使用以下命令激活虚拟环境: ``` conda activate <env_name> ``` 5. 安装深度学习框架 在虚拟环境中使用以下命令安装需要的深度学习框架,如Tensorflow、Keras、PyTorch 等等: ``` conda install tensorflow keras pytorch torchvision -c pytorch ``` 最后,您已成功地在Ubuntu 18.04上搭建了深度学习环境。现在您可以使用Python和相应的深度学习框架,从而开始探索深度学习的奇妙世界。
阅读全文

相关推荐

最新推荐

recommend-type

Ubuntu 20.04 CUDA&cuDNN安装方法(图文教程)

在Ubuntu 20.04操作系统中安装CUDA和cuDNN是进行深度学习和高性能计算的重要步骤。CUDA是NVIDIA公司提供的一个并行计算平台,它允许开发者利用GPU的计算能力来加速应用程序。cuDNN(CUDA Deep Neural Network)则是...
recommend-type

Jupyter_关于长期序列预测NeurIPS 2021的自耦分解变压器的代码发布.zip

Jupyter-Notebook
recommend-type

高清艺术文字图标资源,PNG和ICO格式免费下载

资源摘要信息:"艺术文字图标下载" 1. 资源类型及格式:本资源为艺术文字图标下载,包含的图标格式有PNG和ICO两种。PNG格式的图标具有高度的透明度以及较好的压缩率,常用于网络图形设计,支持24位颜色和8位alpha透明度,是一种无损压缩的位图图形格式。ICO格式则是Windows操作系统中常见的图标文件格式,可以包含不同大小和颜色深度的图标,通常用于桌面图标和程序的快捷方式。 2. 图标尺寸:所下载的图标尺寸为128x128像素,这是一个标准的图标尺寸,适用于多种应用场景,包括网页设计、软件界面、图标库等。在设计上,128x128像素提供了足够的面积来展现细节,而大尺寸图标也可以方便地进行缩放以适应不同分辨率的显示需求。 3. 下载数量及内容:资源提供了12张艺术文字图标。这些图标可以用于个人项目或商业用途,具体使用时需查看艺术家或资源提供方的版权声明及使用许可。在设计上,艺术文字图标融合了艺术与文字的元素,通常具有一定的艺术风格和创意,使得图标不仅具备标识功能,同时也具有观赏价值。 4. 设计风格与用途:艺术文字图标往往具有独特的设计风格,可能包括手绘风格、抽象艺术风格、像素艺术风格等。它们可以用于各种项目中,如网站设计、移动应用、图标集、软件界面等。艺术文字图标集可以在视觉上增加内容的吸引力,为用户提供直观且富有美感的视觉体验。 5. 使用指南与版权说明:在使用这些艺术文字图标时,用户应当仔细阅读下载页面上的版权声明及使用指南,了解是否允许修改图标、是否可以用于商业用途等。一些资源提供方可能要求在使用图标时保留作者信息或者在产品中适当展示图标来源。未经允许使用图标可能会引起版权纠纷。 6. 压缩文件的提取:下载得到的资源为压缩文件,文件名称为“8068”,意味着用户需要将文件解压缩以获取里面的PNG和ICO格式图标。解压缩工具常见的有WinRAR、7-Zip等,用户可以使用这些工具来提取文件。 7. 具体应用场景:艺术文字图标下载可以广泛应用于网页设计中的按钮、信息图、广告、社交媒体图像等;在应用程序中可以作为启动图标、功能按钮、导航元素等。由于它们的尺寸较大且具有艺术性,因此也可以用于打印材料如宣传册、海报、名片等。 通过上述对艺术文字图标下载资源的详细解析,我们可以看到,这些图标不仅是简单的图形文件,它们集合了设计美学和实用功能,能够为各种数字产品和视觉传达带来创新和美感。在使用这些资源时,应遵循相应的版权规则,确保合法使用,同时也要注重在设计时根据项目需求对图标进行适当调整和优化,以获得最佳的视觉效果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DMA技术:绕过CPU实现高效数据传输

![DMA技术:绕过CPU实现高效数据传输](https://res.cloudinary.com/witspry/image/upload/witscad/public/content/courses/computer-architecture/dmac-functional-components.png) # 1. DMA技术概述 DMA(直接内存访问)技术是现代计算机架构中的关键组成部分,它允许外围设备直接与系统内存交换数据,而无需CPU的干预。这种方法极大地减少了CPU处理I/O操作的负担,并提高了数据传输效率。在本章中,我们将对DMA技术的基本概念、历史发展和应用领域进行概述,为读
recommend-type

SGM8701电压比较器如何在低功耗电池供电系统中实现高效率运作?

SGM8701电压比较器的超低功耗特性是其在电池供电系统中高效率运作的关键。其在1.4V电压下工作电流仅为300nA,这种低功耗水平极大地延长了电池的使用寿命,尤其适用于功耗敏感的物联网(IoT)设备,如远程传感器节点。SGM8701的低功耗设计得益于其优化的CMOS输入和内部电路,即使在电池供电的设备中也能提供持续且稳定的性能。 参考资源链接:[SGM8701:1.4V低功耗单通道电压比较器](https://wenku.csdn.net/doc/2g6edb5gf4?spm=1055.2569.3001.10343) 除此之外,SGM8701的宽电源电压范围支持从1.4V至5.5V的电
recommend-type

mui框架HTML5应用界面组件使用示例教程

资源摘要信息:"HTML5基本类模块V1.46例子(mui角标+按钮+信息框+进度条+表单演示)-易语言" 描述中的知识点: 1. HTML5基础知识:HTML5是最新一代的超文本标记语言,用于构建和呈现网页内容。它提供了丰富的功能,如本地存储、多媒体内容嵌入、离线应用支持等。HTML5的引入使得网页应用可以更加丰富和交互性更强。 2. mui框架:mui是一个轻量级的前端框架,主要用于开发移动应用。它基于HTML5和JavaScript构建,能够帮助开发者快速创建跨平台的移动应用界面。mui框架的使用可以使得开发者不必深入了解底层技术细节,就能够创建出美观且功能丰富的移动应用。 3. 角标+按钮+信息框+进度条+表单元素:在mui框架中,角标通常用于指示未读消息的数量,按钮用于触发事件或进行用户交互,信息框用于显示临时消息或确认对话框,进度条展示任务的完成进度,而表单则是收集用户输入信息的界面组件。这些都是Web开发中常见的界面元素,mui框架提供了一套易于使用和自定义的组件实现这些功能。 4. 易语言的使用:易语言是一种简化的编程语言,主要面向中文用户。它以中文作为编程语言关键字,降低了编程的学习门槛,使得编程更加亲民化。在这个例子中,易语言被用来演示mui框架的封装和使用,虽然描述中提到“如何封装成APP,那等我以后再说”,暗示了mui框架与移动应用打包的进一步知识,但当前内容聚焦于展示HTML5和mui框架结合使用来创建网页应用界面的实例。 5. 界面美化源码:文件的标签提到了“界面美化源码”,这说明文件中包含了用于美化界面的代码示例。这可能包括CSS样式表、JavaScript脚本或HTML结构的改进,目的是为了提高用户界面的吸引力和用户体验。 压缩包子文件的文件名称列表中的知识点: 1. mui表单演示.e:这部分文件可能包含了mui框架中的表单组件演示代码,展示了如何使用mui框架来构建和美化表单。表单通常包含输入字段、标签、按钮和其他控件,用于收集和提交用户数据。 2. mui角标+按钮+信息框演示.e:这部分文件可能展示了mui框架中如何实现角标、按钮和信息框组件,并进行相应的事件处理和样式定制。这些组件对于提升用户交互体验至关重要。 3. mui进度条演示.e:文件名表明该文件演示了mui框架中的进度条组件,该组件用于向用户展示操作或数据处理的进度。进度条组件可以增强用户对系统性能和响应时间的感知。 4. html5标准类1.46.ec:这个文件可能是核心的HTML5类库文件,其中包含了HTML5的基础结构和类定义。"1.46"表明这是特定版本的类库文件,而".ec"文件扩展名可能是易语言项目中的特定格式。 总结来说,这个资源摘要信息涉及到HTML5的前端开发、mui框架的界面元素实现和美化、易语言在Web开发中的应用,以及如何利用这些技术创建功能丰富的移动应用界面。通过这些文件和描述,可以学习到如何利用mui框架实现常见的Web界面元素,并通过易语言将这些界面元素封装成移动应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【数据传输高速公路】:总线系统的深度解析

![计算机组成原理知识点](https://img-blog.csdnimg.cn/6ed523f010d14cbba57c19025a1d45f9.png) # 1. 总线系统概述 在计算机系统和电子设备中,总线系统扮演着至关重要的角色。它是一个共享的传输介质,用于在组件之间传递数据和控制信号。无论是单个芯片内部的互连,还是不同设备之间的通信,总线技术都是不可或缺的。为了实现高效率和良好的性能,总线系统必须具备高速传输能力、高效的数据处理能力和较高的可靠性。 本章节旨在为读者提供总线系统的初步了解,包括其定义、历史发展、以及它在现代计算机系统中的应用。我们将讨论总线系统的功能和它在不同层
recommend-type

如何结合PID算法调整PWM信号来优化电机速度控制?请提供实现这一过程的步骤和代码示例。

为了优化电机的速度控制,结合PID算法调整PWM信号是一种常见且有效的方法。这里提供一个具体的实现步骤和代码示例,帮助你深入理解这一过程。 参考资源链接:[Motor Control using PWM and PID](https://wenku.csdn.net/doc/6412b78bbe7fbd1778d4aacb?spm=1055.2569.3001.10343) 首先,确保你已经有了一个可以输出PWM波形的硬件接口,例如Arduino或者其他微控制器。接下来,你需要定义PID控制器的三个主要参数:比例(P)、积分(I)、微分(D),这些参数决定了控制器对误差的响应速度和方式。