function L = softmaxLog(X,W) % L(n,:) = log softmax(W * X(n,:)') % This file is from pmtk3.googlecode.com eta = X*W; Z = sum(exp(eta), 2); nclasses = size(eta,2); L = eta - repmat(log(Z), 1, nclasses); end
时间: 2024-04-12 13:34:26 浏览: 123
这段代码实现了 softmax 函数的对数形式 `softmaxLog`。
该函数的输入参数包括:
- `X`:输入矩阵,大小为 N-by-D,其中 N 是样本数量,D 是输入变量的维度;
- `W`:权重矩阵,大小为 D-by-C,其中 C 是输出类别的数量。
函数的输出是一个矩阵 `L`,大小为 N-by-C,表示对数 softmax 函数的结果。
在函数内部,首先计算乘积 `eta`,即输入矩阵 `X` 与权重矩阵 `W` 的点积。
然后,计算每个样本的 softmax 函数分母 `Z`,通过对乘积 `eta` 按行进行指数运算,并求和。
接下来,获取输出类别的数量 `nclasses`。
最后,计算对数 softmax 函数的结果 `L`。首先计算乘积 `eta` 减去 log(Z) 的结果,并使用 repmat 函数复制 log(Z) 到与乘积 `eta` 相同的大小。然后将结果赋值给 `L`。
这段代码的作用是计算输入矩阵经过 softmax 函数后的对数概率。
如果还有其他问题,欢迎提问!
相关问题
function [ess, ll] = estep(model, data) X = data.X; y = data.y; N = size(X,1); K = model.nmix; if model.fixmix logprior = repmat(rowvec(log(model.mixweights)), N, 1); else logprior = softmaxLog(X, model.Wq); end loglik = zeros(N,K); if ~model.classifier for k=1:K loglik(:,k) = gaussLogprob(X*model.Wy(:,k), model.sigma2(k), y); end else for k=1:K logpred = softmaxLog(X, model.Wy(:,:,k)); % N*C %loglik(:,k) = logpred(:, y); % pluck out correct columns loglik(y == k,k) = logpred(y == k,k); end end logpost = loglik + logprior; [logpost, logZ] = normalizeLogspace(logpost); ll = sum(logZ); post = exp(logpost); ess.data = data; ess.post = post; end
这段代码是 E 步函数 `estep` 的实现。
该函数的输入参数包括:
- `model`: 混合专家模型,是一个结构体,包含了模型的参数;
- `data`: 数据集,包含输入变量 `X` 和输出变量 `y`。
函数的输出包括:
- `ess`: 期望后验分布的统计量,是一个结构体,包含了数据集和后验概率;
- `ll`: 对数似然值。
在函数内部,首先从数据集中提取输入变量 `X` 和输出变量 `y`,并获取样本数量 `N` 和混合成分的数量 `K`。
然后,根据模型是否固定混合权重 `fixmix` 的取值,计算先验概率的对数 `logprior`。如果 `fixmix` 为真,则使用混合权重 `model.mixweights` 计算;如果 `fixmix` 为假,则使用 softmax 函数计算权重矩阵 `model.Wq`。
接下来,根据模型是否为分类问题,计算似然概率的对数 `loglik`。如果是回归问题,则对于每个混合成分,使用高斯分布计算;如果是分类问题,则对于每个混合成分,使用 softmax 函数计算输出类别的概率,并选择正确类别的列。
然后,计算后验概率的对数 `logpost`,即似然概率和先验概率的对数之和。
接下来,对后验概率进行归一化,得到真实的后验概率 `post`,并计算对数归一化常数 `logZ`。
最后,计算对数似然值 `ll`,即归一化常数的总和。
将数据集和后验概率存储在结构体 `ess` 中,并将其返回。
这段代码的作用是在 E 步中计算后验概率和对数似然值。
如果还有其他问题,欢迎提问!
# coding: utf-8 import numpy as np def identity_function(x): return x def step_function(x): return np.array(x > 0, dtype=np.int) def sigmoid(x): return 1 / (1 + np.exp(-x)) def sigmoid_grad(x): return (1.0 - sigmoid(x)) * sigmoid(x) def relu(x): return np.maximum(0, x) def relu_grad(x): grad = np.zeros(x) grad[x>=0] = 1 return grad def softmax(x): if x.ndim == 2: x = x.T x = x - np.max(x, axis=0) y = np.exp(x) / np.sum(np.exp(x), axis=0) return y.T x = x - np.max(x) # 溢出对策 return np.exp(x) / np.sum(np.exp(x)) def mean_squared_error(y, t): return 0.5 * np.sum((y-t)**2) def cross_entropy_error(y, t): if y.ndim == 1: t = t.reshape(1, t.size) y = y.reshape(1, y.size) # 监督数据是one-hot-vector的情况下,转换为正确解标签的索引 if t.size == y.size: t = t.argmax(axis=1) batch_size = y.shape[0] return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size def softmax_loss(X, t): y = softmax(X) return cross_entropy_error(y, t)
这是一个包含各种常用神经网络函数的 Python 代码。其中 identity_function 表示恒等函数,step_function 表示阶跃函数,sigmoid 和 sigmoid_grad 表示 sigmoid 函数及其导数,relu 和 relu_grad 表示 ReLU 函数及其导数,softmax 表示 softmax 函数,mean_squared_error 和 cross_entropy_error 表示均方误差损失函数和交叉熵损失函数,softmax_loss 表示将 softmax 函数和交叉熵损失函数合并成一个层。
这些函数在神经网络的训练和测试中都有重要作用。例如,sigmoid 函数常被用于神经网络中的神经元激活函数,用于二分类任务的预测;ReLU 函数则常被用于卷积神经网络中的卷积层激活函数,用于提取图像特征;softmax 函数则常被用于神经网络中的输出层激活函数,用于多分类任务的预测。损失函数则常被用于评估神经网络的性能,用于反向传播算法的求解。
阅读全文