调度线程池执行器如何保证计算得到的触发时间小于等于Long.MAX_VALUE

时间: 2024-04-17 21:28:24 浏览: 6
调度线程池执行器可以通过以下方式来保证计算得到的触发时间小于等于Long.MAX_VALUE: 1. 使用合适的时间单位:调度线程池通常会提供一些设置时间的方法,例如`schedule()`方法。在设置触发时间时,可以使用合适的时间单位,例如毫秒或纳秒,确保计算得到的触发时间值在Long.MAX_VALUE内。 2. 使用合适的调度策略:调度线程池通常会提供多种调度策略,例如固定延迟、固定速率等。选择合适的调度策略可以确保触发时间在可接受的范围内,不超过Long.MAX_VALUE。 3. 避免溢出或越界:在计算触发时间时,需要注意避免溢出或越界的情况。例如,在计算延迟时间时,如果使用了大于Long.MAX_VALUE的数值进行计算,就可能导致溢出。因此,需要合理地选择计算方式和数据类型,确保不会出现溢出或越界的情况。 总之,通过选择合适的时间单位、调度策略,并避免溢出或越界等问题,调度线程池执行器可以有效地保证计算得到的触发时间小于等于Long.MAX_VALUE。
相关问题

我问的是调度线程池执行器如何保证计算得到的触发时间小于等于Long.MAX_VALUE,而不是开发者如何保证。

抱歉,我理解错了您的问题。调度线程池执行器在内部实现上是无法直接保证计算得到的触发时间小于等于Long.MAX_VALUE的,因为Long.MAX_VALUE是一个固定的最大值,无法超过这个范围。 但是,调度线程池执行器通常会提供一些机制来确保触发时间不会超过一定的范围,例如通过一些限制或调整策略。下面是一些可能的方式: 1. 时间戳截断:调度线程池执行器在计算触发时间时,可以将时间戳截断到Long.MAX_VALUE之前的某个值。这样可以确保计算得到的触发时间不会超过Long.MAX_VALUE。 2. 时间单位限制:调度线程池执行器可以限制接受的时间单位范围,例如只接受毫秒级别的时间单位。这样可以避免使用过大的时间单位导致计算得到的触发时间超过Long.MAX_VALUE。 3. 适当缩小调度范围:调度线程池执行器可以根据实际需求,缩小调度的时间范围,以确保计算得到的触发时间不会超过Long.MAX_VALUE。 需要注意的是,具体的实现方式可能会因调度线程池执行器的不同而有所差异。在使用调度线程池执行器时,建议查阅相关文档或参考其实现源码,以了解具体的保证触发时间不超过Long.MAX_VALUE的机制。

triggerTime(long delay)方法中为什么要判断delay < (Long.MAX_VALUE >> 1)?

在调度线程池执行器中,判断 `delay < (Long.MAX_VALUE >> 1)` 的目的是为了避免在计算触发时间时出现溢出的情况。 `Long.MAX_VALUE` 是 Java 中 `long` 类型的最大值,它表示一个固定的极大值。当我们进行计算时,如果 delay 的值接近 `Long.MAX_VALUE`,那么在计算 `triggerTime = System.currentTimeMillis() + delay` 时,可能会导致溢出。 为了避免溢出,通过判断 `delay < (Long.MAX_VALUE >> 1)`,即 delay 是否小于 `Long.MAX_VALUE` 的一半,确保 delay 的值足够小,不会导致溢出。右移一位相当于除以2,所以 `(Long.MAX_VALUE >> 1)` 表示 `Long.MAX_VALUE` 的一半。 这个判断条件是一种保守的做法,确保在计算触发时间时不会出现溢出问题,以提高代码的健壮性和可靠性。

相关推荐

class Process: def __init__(self, pid, arrival_time, burst_time): self.pid = pid self.arrival_time = arrival_time self.burst_time = burst_time self.waiting_time = 0 self.turnaround_time = 0 self.response_ratio = 0 self.start_time = 0 self.complete_time = 0 def hrrn(processes): n = len(processes) current_time = 0 completed_processes = [] while len(completed_processes) < n: # 计算每个进程的响应比 for p in processes: if p not in completed_processes: waiting_time = current_time - p.arrival_time p.response_ratio = 1 + waiting_time / p.burst_time # 选择响应比最大的进程执行 selected_process = max(processes, key=lambda x: x.response_ratio) selected_process.start_time = current_time selected_process.complete_time = current_time + selected_process.burst_time selected_process.turnaround_time = selected_process.complete_time - selected_process.arrival_time current_time = selected_process.complete_time completed_processes.append(selected_process) return completed_processes # 创建进程列表 processes = [ Process(1, 0, 10), Process(2, 1, 5), Process(3, 2, 8), Process(4, 3, 6), ] # 运行调度算法 completed_processes = hrrn(processes) # 输出结果 total_wait_time = sum([p.waiting_time for p in completed_processes]) total_turnaround_time = sum([p.turnaround_time for p in completed_processes]) total_weighted_turnaround_time = sum([p.turnaround_time / p.burst_time for p in completed_processes]) for p in completed_processes: print( f"Process {p.pid}:到达时间 {p.arrival_time},所需执行时间{p.burst_time},开始时间{p.start_time},结束时间 {p.complete_time},周转时间 {p.turnaround_time},带权周转时间 {p.turnaround_time / p.burst_time:.2f}") print(f"平均周转时间:{total_turnaround_time / len(completed_processes):.2f}") print(f"平均带权周转时间:{total_weighted_turnaround_time / len(completed_processes):.2f}") 解释这段代码的设计思路

class Process: def init(self, pid, arrival_time, burst_time): self.pid = pid #进程id self.arrival_time = arrival_time #到达时间 self.burst_time = burst_time #执行时间 self.waiting_time = 0 #等待时间 self.turnaround_time = 0 #周转时间 self.response_ratio = 0 #响应比 self.start_time = 0 #开始时间 self.complete_time = 0 #结束时间 def hrrn(processes): n = len(processes) current_time = 0 completed_processes = [] while len(completed_processes) < n: # 计算每个进程的响应比 for p in processes: if p not in completed_processes: waiting_time = current_time - p.arrival_time p.response_ratio = 1 + waiting_time / p.burst_time #响应比=1+作业等待时间/估计运行时间 # 选择响应比最大的进程执行 selected_process = max(processes, key=lambda x: x.response_ratio) selected_process.start_time = current_time selected_process.complete_time = current_time + selected_process.burst_time selected_process.turnaround_time = selected_process.complete_time - selected_process.arrival_time current_time = selected_process.complete_time completed_processes.append(selected_process) return completed_processes #重复上述过程直到所有进程都完成。 # 创建进程列表 processes = [ Process(1, 0, 7), #(进程id,到达时间,执行时间) Process(2, 1, 8), Process(3, 2, 6), Process(4, 3, 4), ] # 运行调度算法 completed_processes = hrrn(processes) # 输出结果 total_wait_time = sum([p.waiting_time for p in completed_processes]) total_turnaround_time = sum([p.turnaround_time for p in completed_processes]) total_weighted_turnaround_time = sum([p.turnaround_time / p.burst_time for p in completed_processes]) for p in completed_processes: print( f"Process {p.pid}:到达时间 {p.arrival_time},所需执行时间{p.burst_time},开始时间{p.start_time},结束时间 {p.complete_time},周转时间 {p.turnaround_time},带权周转时间 {p.turnaround_time / p.burst_time:.2f}") print(f"平均周转时间:{total_turnaround_time / len(completed_processes):.2f}") print(f"平均带权周转时间:{total_weighted_turnaround_time / len(completed_processes):.2f}") #对进程列表进行修改 #结果预计为: # Process 1:到达时间 0,所需执行时间7,开始时间0,结束时间 7,周转时间 7,带权周转时间 1.00 # Process 4:到达时间 3,所需执行时间4,开始时间7,结束时间 11,周转时间 8,带权周转时间 2.00 # Process 3:到达时间 2,所需执行时间6,开始时间11,结束时间 17,周转时间 15,带权周转时间 2.50 # Process 2:到达时间 1,所需执行时间8,开始时间17,结束时间 25,周转时间 24,带权周转时间 3.00 # 平均周转时间:13.50 # 平均带权周转时间:2.12 简述上述程序的设计思路

最新推荐

recommend-type

0 时间触发以太网交换机设计(公开)※.pdf

TTE总线技术入门必备,欢迎下载! TTE,Time Triggered Ethernet,时间触发以太网,时间触发以太网总线
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解答下列问题:S—>S;T|T;T—>a 构造任意项目集规范族,构造LR(0)分析表,并分析a;a

对于这个文法,我们可以构造以下项目集规范族: I0: S -> .S S -> .T T -> .a I1: S -> S. [$ T -> T. [$ I2: S -> T. I3: S -> S.;S S -> S.;T T -> T.;a 其中,点(.)表示已经被扫描过的符号,;$表示输入串的结束符号。 根据项目集规范族,我们可以构造出LR(0)分析表: 状态 | a | $ ---- | - | - I0 | s3| I1 | |acc I2 | | 其中s3表示移进到状态3,acc表示接受。在分析字符串a;a时,我们可以按照以下步骤进行
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

mac上和window原生一样的历史剪切板工具有什么

好的,我明白了您的要求。关于您的问题,为使Mac与Windows的历史剪切板功能类似,可以使用第三方工具"CopyClip"、"Alfred"、"Clipboard Manager"等。这些工具可以记录您复制到剪切板的所有内容,而不仅仅是最后一次复制。同时,它们还可以进行搜索和过滤,以便您更快地找到需要的内容。希望这能回答您的问题。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。