The size of tensor a (2) must match the size of tensor b (10) at non-singleton dimension 0
时间: 2023-12-13 15:31:45 浏览: 107
这个错误通常是由于两个张量在第0个维度上的大小不匹配导致的。这可能是由于在进行张量操作时,两个张量的形状不兼容所致。要解决这个问题,您需要检查两个张量的形状,并确保它们在进行操作时是兼容的。您可以使用PyTorch的`size()`函数来检查张量的形状。如果您需要更改张量的形状,可以使用`view()`函数。
<<请问如何使用PyTorch的size()函数检查张量的形状?>>
以下是一个例子,假设您有两个张量a和b,您可以使用以下代码检查它们的形状:
```python
import torch
a = torch.randn(2, 3)
b = torch.randn(10, 3)
print(a.size()) # 输出:torch.Size([2, 3])
print(b.size()) # 输出:torch.Size([10, 3])
```
如果您需要更改张量的形状,您可以使用`view()`函数。例如,如果您想将张量a的形状更改为(3, 2),您可以使用以下代码:
```python
a = a.view(3, 2)
print(a.size()) # 输出:torch.Size([3, 2])
```
相关问题
The size of tensor a (100) must match the size of tensor b (10) at non-singleton dimension 0
这个错误提示意味着张量a和张量b在非单一维度0上的大小不匹配,因此无法完成操作。如果张量a的大小为100,张量b的大小为10,则无法在第0个维度上匹配它们。要解决这个问题,您需要确保张量a和张量b在所有维度上的大小都匹配,或者使用广播机制来匹配它们的大小。
以下是两种解决方法的示例代码:
1. 确保张量a和张量b在所有维度上的大小都匹配:
```python
import torch
a = torch.randn(100, 5)
b = torch.randn(10, 5)
if a.size(0) != b.size(0):
raise ValueError("The size of tensor a ({}) must match the size of tensor b ({}) at non-singleton dimension 0".format(a.size(0), b.size(0)))
# 进行操作
```
2. 使用广播机制来匹配张量a和张量b的大小:
```python
import torch
a = torch.randn(100, 5)
b = torch.randn(10, 5)
# 使用广播机制来匹配张量a和张量b的大小
a = a.unsqueeze(1) # 在第1个维度上添加一个维度
b = b.unsqueeze(0) # 在第0个维度上添加一个维度
a = a.expand(-1, 10, -1) # 在第1个维度上复制10次
b = b.expand(100, -1, -1) # 在第0个维度上复制100次
# 进行操作
```
The size of tensor a (10) must match the size of tensor b (3) at non-singleton dimension 1
The error message "The size of tensor a (10) must match the size of tensor b (3) at non-singleton dimension 1" indicates that the dimensions of tensor a and tensor b do not match at dimension 1, which prevents the operation from being completed. It seems that the number of elements in tensor a at dimension 1 is 10, while the number of elements in tensor b at dimension 1 is 3.
To fix this issue, you can either resize one of the tensors to match the other tensor's dimension at dimension 1, or reshape one of the tensors to have a different number of dimensions.
Here are some possible solutions:
1. Reshape tensor a: You can reshape tensor a to match the number of elements in tensor b at dimension 1. For example, if tensor a has a shape of (10, 5) and tensor b has a shape of (3, 5), you can reshape tensor a to have a shape of (3, 2, 5) using the reshape() function.
2. Resize tensor b: Alternatively, you can resize tensor b to match the number of elements in tensor a at dimension 1. For example, if tensor a has a shape of (10, 5) and tensor b has a shape of (3, 5), you can resize tensor b to have a shape of (10, 5) using the resize() function.
3. Verify the input data: Double-check the input data for tensor a and tensor b to ensure that they have the correct dimensions and sizes.
阅读全文