cantrcv_30_tja1145

时间: 2023-09-06 07:02:59 浏览: 69
cantrcv_30_tja1145 是指一种名为 TJA1145 的 CAN 总线收发器。CAN 总线收发器是一种用于控制区域网络 (CAN) 通信的集成电路组件。CAN 是一种常用于汽车、工业和其他领域的串行通信协议,它能够在不同的电子控制单元之间传递数据。TJA1145 是针对控制区域网络通信而设计的专用收发器。 cantrcv_30_tja1145 具有高性能和可靠性,能够在高速传输和长距离通信的环境中工作。它采用现代化的技术,具有低功耗和低噪声等特点。该收发器支持多种数据传输速率和通信协议,如 CAN FD (Flexible Data) 和 ISO 11898。 使用 cantrcv_30_tja1145 可以实现高效的 CAN 总线通信,从而实现不同设备之间的数据交换和控制。它常用于汽车电子系统中,用于传输各种信息,如引擎数据、传感器数据、车辆状态等。此外,cantrcv_30_tja1145 也可以在工业控制系统、机器人领域以及其他需要可靠通信的应用中使用。 总之,cantrcv_30_tja1145 是一种特殊的 CAN 总线收发器,它具有高性能、可靠性和灵活性,能够在不同应用场景下实现高效的数据通信。
相关问题

void TestDelay(uint32 delay); void TestDelay(uint32 delay) { static volatile uint32 DelayTimer = 0; while (DelayTimer<delay) { DelayTimer++; } DelayTimer=0; } extern void CAN2_ORED_0_31_MB_IRQHandler(void); #if 1 // #include "Can_Ipw.h" #define MSG_ID 20u #define RX_MB_IDX 1U #define TX_MB_IDX 0U volatile int exit_code = 0; extern Flexcan_Ip_StateType Can_Ipw_xStatus0; /* User includes / uint8 dummyData[8] = {1,2,3,4,5,6,7}; /! \brief The main function for the project. \details The startup initialization sequence is the following: * - startup asm routine * - main() / //extern const Clock_Ip_ClockConfigType Clock_Ip_aClockConfig[1]; extern void CAN0_ORED_0_31_MB_IRQHandler(void); int main(void) { uint8 u8TimeOut = 100U; CanIf_bTxFlag = FALSE; CanIf_bRxFlag = FALSE; / Initialize the Mcu driver / #if (MCU_PRECOMPILE_SUPPORT == STD_ON) Mcu_Init(NULL_PTR); #elif (MCU_PRECOMPILE_SUPPORT == STD_OFF) Mcu_Init(&Mcu_Config); / Initialize the clock tree and apply PLL as system clock / Mcu_InitClock(McuClockSettingConfig_0); while ( MCU_PLL_LOCKED != Mcu_GetPllStatus() ) { / Busy wait until the System PLL is locked / } #endif / (MCU_PRECOMPILE_SUPPORT == STD_ON) / / Write your code here / Mcu_DistributePllClock(); Mcu_SetMode(McuModeSettingConf_0); / Initialize Platform driver */ Platform_Init(NULL_PTR); Port_Init(&Port_Config); Spi_Init(&Spi_Config); #if 1 // CanTrcv_TJA1145_Init(); uint8 SWK_WUF_Detection = 0u; uint8 tempRegVal = 0u; /SBC mode StandBy/ /SBC_SetMode(CANTRCV_TRCVMODE_STANDBY);/ /Disable wakepin/ Sbc_Reg_Write(CanTrcv_Tja1145_Wpe, 0x00, FALSE); /Set Lock control register/ Sbc_Reg_Write(CanTrcv_Tja1145_Lc, 0x00, FALSE); /Can baudrate config/ Sbc_Reg_Write(CanTrcv_Tja1145_Dr, CANTRCV_TJA1145_CAN_DATA_RATE, FALSE); /Set CAN control register/ Sbc_Reg_Write(CanTrcv_Tja1145_Cc, 0x31, FALSE); Sbc_Reg_Read(CanTrcv_Tja1145_Ts, &tempRegVal); Sbc_Reg_Read(CanTrcv_Tja1145_Tes, &SWK_WUF_Detection); Sbc_Reg_Write(CanTrcv_Tja1145_Mc, CanTrcv_Tja1145_Mc_MC_Normal, FALSE); Sbc_Reg_Write(CanTrcv_Tja1145_Cc,CanTrcv_Tja1145_Cc_CMC_Active,FALSE); #endif // Clock_Ip_Init(&Clock_Ip_aClockConfig[0]); volatile Flexcan_Ip_StatusType result = 1; volatile Flexcan_Ip_StatusType result1 = 1; IntCtrl_Ip_EnableIrq(FlexCAN0_1_IRQn); IntCtrl_Ip_InstallHandler(FlexCAN0_1_IRQn, CAN0_ORED_0_31_MB_IRQHandler, NULL_PTR); // Dio_WriteChannel(DioConf_DioChannel_DioChannel_O_S_STB_CAN3_M, STD_LOW);//CAN3 STB Flexcan_Ip_DataInfoType rx_info = { .msg_id_type = FLEXCAN_MSG_ID_STD, .data_length = 8u, .is_polling = TRUE, .is_remote = FALSE }; Flexcan_Ip_MsgBuffType rxData; FlexCAN_Ip_Init(CanController_0, &Can_Ipw_xStatus0, &Flexcan_aCtrlConfigPB[0U]);// while (1) { if(rx_compli==1) { FlexCAN_Ip_SetStartMode(CanController_0); FlexCAN_Ip_ConfigRxMb(CanController_0, RX_MB_IDX, &rx_info, MSG_ID); // rx_info.is_polling = FALSE; FlexCAN_Ip_Send(CanController_0, TX_MB_IDX, &rx_info, MSG_ID, (uint8 *)&dummyData); FlexCAN_Ip_Receive(CanController_0, RX_MB_IDX, &rxData, TRUE); while(FlexCAN_Ip_GetTransferStatus(CanController_0, RX_MB_IDX)

Sorry, I'm an AI language model and I don't have enough context to understand your question. Could you please provide more information or clarify your question?

那这个Write_Reg_TJA1145函数具体该如何定义

Write_Reg_TJA1145函数的定义可以参考以下代码: ``` void Write_Reg_TJA1145(uint8_t reg_addr, uint8_t reg_val) { // 将reg_addr和reg_val写入TJA1145寄存器 // ... } ``` 其中,reg_addr表示要写入的寄存器地址,reg_val表示要写入的寄存器值。具体的实现过程会根据不同的硬件平台和通信协议而有所不同,需要根据具体情况进行实现。

相关推荐

最新推荐

recommend-type

车载以太网PHY TJA1100评估板用户手册.pdf

This document describes the usage of the TJA1100 Customer Evaluation Board. The Board supports the evaluation of the TJA1100 with providing (MII) a 40-pins standard header (including MII/SMI/control...
recommend-type

车载以太网PHY TJA1101A用户手册.pdf

This reference document describes the configuration, register structure and mapping of the TJA1101A Ethernet PHY.
recommend-type

车载以太网PHY TJA1101B数据手册.pdf

The TJA1101B is a 100BASE-T1-compliant Ethernet PHY optimized for automotive use cases such as gateways, IP camera links, radar modules, driver assistance systems and back-bone networks. The device ...
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S