cv2.threshold(gray, threshold, 255, cv2.THRESH_BINARY)的底层python代码是什么
时间: 2024-05-09 13:11:57 浏览: 225
cv2.threshold(gray, threshold, 255, cv2.THRESH_BINARY)是OpenCV库中用于图像二值化的函数。它的底层Python代码如下:
```python
import cv2
# 读取灰度图像
gray_image = cv2.imread("image.jpg", 0)
# 进行阈值处理
ret, binary_image = cv2.threshold(gray_image, threshold, 255, cv2.THRESH_BINARY)
```
在这段代码中,首先使用`cv2.imread()`函数读取一张灰度图像,将其存储在`gray_image`变量中。然后,使用`cv2.threshold()`函数对灰度图像进行阈值处理。该函数的参数依次为:输入图像、阈值、最大像素值、阈值类型。函数返回两个值,第一个是阈值,第二个是处理后的二值图像,分别存储在`ret`和`binary_image`变量中。
相关问题
image = cv2.imread('scan.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if preprocess == "thresh": gray = cv2.threshold(gray, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] if preprocess == "blur": gray = cv2.medianBlur(gray, 3) filename = "{}.png".format(os.getpid()) cv2.imwrite(filename, gray) text = pytesseract.image_to_string(Image.open(filename),lang='chi_sim') print(text) cv2.imshow("Image", image) cv2.imshow("Output", gray) cv2.waitKey(0)
这段代码主要是用于读取图像、对图像进行预处理并提取文本内容。我会逐步解释代码的功能:
- 首先,使用`cv2.imread()`函数读取名为`scan.jpg`的图像并将其存储在`image`变量中。
- 接下来,使用`cv2.cvtColor()`函数将彩色图像转换为灰度图像,并将结果存储在`gray`变量中。
- 如果`preprocess`变量的值是"thresh",则通过阈值化操作将灰度图像二值化,使用`cv2.threshold()`函数并将结果存储在`gray`变量中。
- 如果`preprocess`变量的值是"blur",则通过中值模糊操作对灰度图像进行模糊处理,使用`cv2.medianBlur()`函数并将结果存储在`gray`变量中。
- 接下来,使用`os.getpid()`函数获取当前进程的ID,并将其作为文件名的一部分,将灰度图像以PNG格式保存到文件中,文件名存储在`filename`变量中。
- 使用`pytesseract.image_to_string()`函数读取图像文件中的文本内容,并将结果存储在`text`变量中。其中,设置参数`lang='chi_sim'`用于指定识别中文字符。
- 最后,使用`cv2.imshow()`函数显示原始图像和预处理后的灰度图像。使用`cv2.waitKey(0)`等待用户按下任意键后关闭图像窗口。
这段代码使用了OpenCV和Tesseract库来进行图像处理和文本识别。
img=cv2.threshold(image,90,255,cv2.THRESH_BINARY) #调整裁剪效果 阈值算法速度优于canny算法 # img = cv2.Canny(image,100,20) # cannyb = cv2.resize(b,None,fx=0.25,fy=0.25) # cv2.imshow('Canny', cannyb) # cv2.waitKey(0) binary_image=img[1] #二值图--具有三通道 # binary_image = img # binary_image=cv2.cvtColor(binary_image,cv2.COLOR_BGR2GRAY) # print(binary_image.shape) #改为单通道 x = binary_image.shape[1] print("宽度x=", x) y=binary_image.shape[0] print("高度y=",y) x_min = 0 y_min = 0 x_max = 0 y_max = 0 count = 0 for r in range(y): if 255 in binary_image[r][:]: if count == 0: y_min = r count += 1 y_max = r
以下是将该Python代码转换为C++代码的实现示例:
```c++
cv::Mat img;
cv::threshold(image, img, 90, 255, cv::THRESH_BINARY);
// cv::Canny(image, img, 100, 200);
// cv::resize(b, cannyb, cv::Size(), 0.25, 0.25);
// cv::imshow("Canny", cannyb);
// cv::waitKey(0);
cv::Mat binary_image = img;
// cv::cvtColor(binary_image, binary_image, cv::COLOR_BGR2GRAY);
// std::cout << binary_image.size() << std::endl;
int x = binary_image.cols;
std::cout << "宽度x=" << x << std::endl;
int y = binary_image.rows;
std::cout << "高度y=" << y << std::endl;
int x_min = 0, y_min = 0, x_max = 0, y_max = 0, count = 0;
for (int r = 0; r < y; r++) {
bool has_object = false;
for (int c = 0; c < binary_image.cols; c++) {
if (binary_image.at<uchar>(r, c) == 255) {
has_object = true;
break;
}
}
if (has_object) {
if (count == 0) {
y_min = r;
}
count++;
y_max = r;
}
}
```
需要注意的是,在C++中使用OpenCV库进行图像处理时,需要使用`cv::Mat`类型来表示图像,并且需要使用`at<uchar>(r, c)`方法来获取图像中指定位置的像素值。此外,在使用`cv::threshold()`函数时,需要将输出结果赋值给一个新的`cv::Mat`对象,而不能直接覆盖原始输入图像。
阅读全文