【Java并发框架对比】:Executor, ForkJoinPool, 和 ParallelStream,三者对比分析
发布时间: 2024-08-29 15:00:17 阅读量: 64 订阅数: 28
果壳处理器研究小组(Topic基于RISCV64果核处理器的卷积神经网络加速器研究)详细文档+全部资料+优秀项目+源码.zip
![【Java并发框架对比】:Executor, ForkJoinPool, 和 ParallelStream,三者对比分析](https://img-blog.csdnimg.cn/53f081d126d74b72b38e69a7a5b26296.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA5Lq65bel5pm6,size_20,color_FFFFFF,t_70,g_se,x_16)
# 1. Java并发编程基础
在当今的软件开发领域,尤其是在后端服务和大型企业应用中,多线程和并发编程是不可避免的话题。Java作为一门成熟且广泛使用的企业级编程语言,其并发编程能力不仅体现在提供了丰富的并发API,还在于其背后所支持的理论深度和实践广度。本章将从Java并发编程的基础知识讲起,为读者打开并发世界的大门。
## 1.1 Java中的线程基础
线程是并发编程的核心,Java通过`java.lang.Thread`类和`java.lang.Runnable`接口提供了对线程的直接支持。创建和启动一个线程很简单:
```java
class MyThread extends Thread {
public void run() {
// 线程执行的代码
}
}
MyThread t = new MyThread();
t.start();
```
或者使用`Runnable`接口:
```java
class MyRunnable implements Runnable {
public void run() {
// 线程执行的代码
}
}
Thread t = new Thread(new MyRunnable());
t.start();
```
在这些基础之上,我们还可以通过继承`Thread`类或实现`Runnable`接口来定义一个线程需要执行的任务,然后通过调用线程对象的`start()`方法来启动线程。线程一旦启动,Java虚拟机就会为其分配系统资源,并调度执行。
线程的生命周期包括以下五个状态:
- 新建(New):线程被创建后尚未启动。
- 运行(Runnable):包括就绪状态(Ready)和运行中状态(Running)。
- 阻塞(Blocked):线程等待监视器锁。
- 等待(Waiting):线程等待另一个线程执行一个(或多个)特定操作。
- 超时等待(Timed Waiting):线程等待一个指定的时间段。
- 终止(Terminated):线程执行完毕或者因异常退出。
掌握线程的这些基础知识,对于理解和使用Java并发框架来说至关重要。在后续章节中,我们将深入探讨如何通过Java并发API来管理线程以及执行并发任务,从而实现高效且安全的多线程编程。
# 2. Executor框架的深入理解
### 2.1 Executor框架的设计理念
#### 2.1.1 任务与执行器的关系
在多线程编程中,任务(Runnable或Callable)是线程执行的实体,而执行器(Executor)则是管理任务执行的抽象层。Executor框架的设计旨在将任务的创建和执行解耦,允许开发者通过简单接口定义任务,而将任务的调度、执行和管理交给执行器来处理。
任务与执行器的关系可以用工厂模式类比。在工厂模式中,工厂负责创建产品的过程,而产品只是定义了其应有的功能。在Executor框架中,执行器类(如ThreadPoolExecutor或ScheduledExecutorService)充当工厂的角色,而任务则是产品的定义。通过这种方式,开发人员可以将关注点放在任务的逻辑实现上,而无需担心线程的创建和管理细节。
#### 2.1.2 线程池的工作原理
线程池是Executor框架的核心组件,其工作原理基于以下几点:
1. **复用线程**:线程池维护一组工作线程,这些线程在内部被重复使用,执行提交给线程池的任务。这样避免了频繁的线程创建和销毁,减少了系统开销。
2. **任务队列**:当提交任务数量超过线程池中可用线程数量时,线程池会将多出的任务放入一个内部队列中等待执行。
3. **动态调整**:线程池会根据负载情况动态地添加或终止工作线程。
4. **资源控制**:通过配置线程池的参数(如核心线程数、最大线程数、空闲时间等),可以有效控制线程资源的使用。
### 2.2 Executor框架的关键组件
#### 2.2.1 ThreadPoolExecutor的内部结构
ThreadPoolExecutor是Executor框架中最为灵活和强大的线程池实现,它拥有以下几个核心属性:
- **corePoolSize**:核心线程数,这个数量的线程始终处于活跃状态,即使它们是空闲的。
- **maximumPoolSize**:最大线程数,线程池允许的最大线程数量。
- **BlockingQueue**: 任务队列,用于存放等待执行的任务。
- **ThreadFactory**: 用于创建新线程。
- **RejectedExecutionHandler**:任务拒绝策略,当线程池无法处理新任务时,会调用该策略。
ThreadPoolExecutor通过这些属性的合理配置,可以满足不同场景的需求。
#### 2.2.2 ScheduledExecutorService的定时任务处理
ScheduledExecutorService继承自ExecutorService,专门用于执行延时任务或定期任务。它提供了以下主要接口:
- **schedule(Runnable command, long delay, TimeUnit unit)**:延时执行一个任务。
- **scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnit unit)**:固定频率执行任务,即开始执行后,间隔固定时间执行。
- **scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit)**:固定延迟执行任务,即任务结束后,经过固定时间再执行。
通过这些接口,开发者可以灵活安排任务在未来的特定时间点执行,或者周期性地执行。
### 2.3 Executor框架的应用实践
#### 2.3.1 异步任务的提交与管理
在实际应用中,通常需要异步地执行任务并管理其生命周期。Executor框架提供了以下方法实现异步任务的提交:
- **submit(Runnable task)**:提交一个可返回结果的任务。
- **invokeAny(Collection<? extends Callable<T>> tasks)**:提交一组任务,只要其中的一个任务完成,就会返回该任务的结果。
- **invokeAll(Collection<? extends Callable<T>> tasks)**:提交一组任务,等待所有任务完成,并返回每个任务的结果列表。
这些方法允许开发者以非阻塞的方式提交任务,并通过Future对象管理任务执行的进度和结果。
#### 2.3.2 线程池的参数调优与监控
正确配置线程池的参数是保证应用性能的关键。调优时需要考虑以下参数:
- **corePoolSize**:需要根据任务的性质和系统资源合理设定。
- **maximumPoolSize**:通常与CPU核心数相匹配,过高的最大线程数会导致上下文切换的开销。
- **BlockingQueue**:选择合适的队列类型(如LinkedBlockingQueue、ArrayBlockingQueue)和大小对性能有很大影响。
- **ThreadFactory**:用于自定义线程的创建,例如设置线程名称,便于监控和诊断。
- **RejectedExecutionHandler**:当任务过多,线程池无法处理时,可以通过自定义拒绝策略来处理溢出的任务。
监控线程池状态的工具类ExecutorService提供了以下方法:
- **getPoolSize()**:获取当前线程池大小。
- **getActiveCount()**:获取当前活跃的线程数。
- **getCompletedTaskCount()**:获取已完成任务的数量。
- **getTaskCount()**:获取已提交到线程池的任务总数。
通过这些监控数据,开发者可以对线程池的性能进行分析,及时调整参数以优化应用性能。
# 3. ForkJoinPool的探索与应用
## 3.1 ForkJoinPool的工作原理
### 3.1.1 分而治之的策略
ForkJoinPool是Java并发框架中处理并行任务的重要组件,其设计理念基于分而治之(Divide and Conquer)策略。这种策略的核心思想是将一个难以直接解决的大问题划分成一系列子问题,这些子问题相对更小、更易于处理。然后通过并行执行这些子问题的解决方案,最终汇总子问题的解来构建原问题的解。
具体到ForkJoinPool,它将任务递归地划分成更小的子任务,直到子任务足够小可以直接执行,然后并行执行这些子任务,并将子任务的结果合并以形成最终结果。这个过程被称为“工作窃取”(Work Stealing),它允许空闲的工作线程从其他忙碌线程的任务队列中窃取并执行未完成的任务。这使得所有的线程资源得到充分利用,尤其是在存在大量小任务需要处理的场景下。
### 3.1.2 工作窃取算法详解
工作窃取算法的核心在于,每个工作线程维护一个任务双端队列(deque)。工作线程首先处理自己的任务队列中的任务,完成一个任务后,就从队列的头部取出下一个任务执行。当自己的任务队列为空时,线程会从其他线程的任务队列尾部窃取一批任务来执行。这种设计有效地提高了线程的利用率,并且能够动态地平衡负载。
工作窃取算法特别适合于计算密集型任务。在任务执行中,如果任务不能被进一步分割或分割后的任务不能再进一步并行化,工作线程会直接执行这些任务。ForkJoinPool利用该算法将复杂的工作分割为可以并行执行的多个部分,从而加速任务处理。
工作窃取算法允许线程在没有新任务时帮助其他线程完成工作,这与传统的多线程模型相比,大大减少了线程间同步的开销,提高了并发效率。ForkJoinPool通过这个算法可以提高在多核处理器上处理大规模并行任务的效率。
代码示例:
```java
import java.util.concurrent.RecursiveTask;
import java.util.concurrent.ForkJoinPool;
class FibonacciTask extends RecursiveTask<Integer> {
private final int n;
FibonacciTask(int n) {
this.n = n;
}
@Override
protected Integer compute() {
if (n <= 1) {
return n;
}
FibonacciTask f1 = new FibonacciTask(n - 1);
f1.fork(); // 将任务分割成更小的任务并放入队列
FibonacciTask f2 = new FibonacciTask(n - 2);
***pute() + f1.join(); // 等待并获取结果
}
}
public class ForkJoinExample {
public static void main(String[] args) {
ForkJoinPool pool = new ForkJoinPool();
int result = pool.invoke(new FibonacciTask(10));
System.out.println("Fibonacci number is: " + result);
}
}
```
以上代码定义了一个计算Fibonacci数的ForkJoin任务。任务被递归地分割,然后通过ForkJoinPool并行执行。
## 3.2 ForkJoinPool的高级特性
### 3.2.1 核心与最大工作线程数的配置
ForkJoinPool提供了一种高效利用系统资源的方式来处理并行任务。它通过维护一个由核心线程(core threads)和非核心线程(non-core threads)组成的线程池,优化任务执行。核心线程是线程池的基本工作线程,它们通常不会在任务执行完毕后立即销毁,而是被保持在池中以备不时之需。非核心线程在核心线程满载的情况下创建,用于处理额外的工作负载。一旦非核心线程空闲超过一定时间,它们将被终止以减少资源消耗。
ForkJoinPool允许开发者通过构造函数的参数来指定核心线程数(`parallelism`),这个值决定了池中核心线程的数量。最大工作线程数(`maximumPoolSize`)同样可以在构造函数中指定,它定义了池可以拥有的最大线程数量。在系统资源允许的情况下,调整这些参数可以有效控制线程池的行为,以适应不同的工作负载。
例如,如果你预计会处理大量的并行任务,你可能想要增加核心线程数或最大线程数以并行处理更多的任务。同时,如果你知道在任何时候只需要处理一小部分的并行任务,那么可以减少这些值以节省资源。
代码示例:
```java
ForkJoinPool pool = new ForkJoinPool
```
0
0