In掺杂ZnO薄膜结构特性研究:掠射与θ-2θX射线衍射分析

需积分: 3 0 下载量 10 浏览量 更新于2024-07-16 收藏 427KB PDF 举报
"这篇论文详细探讨了In掺杂ZnO薄膜的结构特性,通过掠射(X-ray Grazing Incidence, GI-XRD)和常规θ-2θ几何方式的X射线衍射技术进行分析。研究由兰伟、刘雪琴、黄春明、郭德峰和王银月等人在兰州大学物理学院进行。他们利用溶胶凝胶旋涂技术在石英衬底上制备了In掺杂的ZnO薄膜。" 在论文中,In-doped ZnO薄膜的沉积工艺是通过溶胶凝胶法与旋涂技术相结合实现的,这种方法允许对薄膜的成分和结构有精细的控制。通过GI-XRD和C-XRD两种不同的X射线衍射方法,可以获取薄膜内部的晶体结构信息。GI-XRD在入射角α=1°时显示出(002)和(103)两个主要的衍射峰,而(103)峰在In掺杂浓度超过临界值(约2at.%)时逐渐成为主要的生长取向,取代了原本的(002)峰。这表明In的掺入改变了ZnO薄膜的结晶方向,可能与固溶体的溶解度有关。 另一方面,C-XRD的结果却显示所有薄膜都只具有(002)的优选取向,没有观察到(103)峰,这暗示了不同探测深度的X射线可能揭示了薄膜结构的不同方面。研究者发现1at.%的In掺杂浓度对于ZnO薄膜来说是最优的,这可能是由于在这个浓度下,薄膜的结晶质量和稳定性达到了最佳平衡。 此外,这些观察结果对于理解和优化In掺杂ZnO薄膜的光电性能至关重要,因为晶体取向和掺杂浓度直接影响其光学性质和电荷传输效率。这种薄膜材料在透明导电氧化物、紫外光探测器、太阳能电池和其他光电子器件中有潜在的应用价值。通过深入研究这些结构特性,可以为未来设计高性能的In-doped ZnO薄膜器件提供理论指导。

翻译The complex 3D geometries of these submillimeter-scale robots originate from planar (2D) multilayer assemblies formed with deposition and patterning techniques used in the semiconductor industry. Figure 1 (A and B) illustrates the process of transformation that converts these 2D precursors into 3D shapes for the case of a design inspired by the geometry of a peekytoe crab (Cancer irroratus) but engineered to a much smaller dimensions (~1/150 of the actual size; fig. S1). The precursors incorporate layers of SMA (nitinol; 2.5 m in thickness) as a collection of dynamic mechanical joints for locomotion, a film of polyimide (PI; ~8 m in thickness) as a static skeleton for structural support, and pads of silicon dioxide (SiO2; 100 nm in thickness) as bonding sites in the 2D to 3D transformation process (left frames in Fig. 1, A and B). This process begins with transfer printing to deliver these 2D precursors onto the surface of a prestretched silicone elastomer (Dragon Skin 10 Slow, ~500 m in thickness) that supports structures of polydimethylsiloxane (PDMS; blocks) located near the claws and back legs (middle frame in Fig. 1B). Releasing the prestrain imposes compressive stresses at the bonding sites, with forces sufficient to convert the 2D structures into 3D architectures via a set of controlled bending/ twisting deformations and translational/rotational motions (31, 32). During this process, the distance between the two PDMS blocks also decreases, thereby deforming the claws and back legs. This transformation involves peak strains (<4%) that lie below the maximum phase transition strain of the SMA (right frame in Fig. 1B).

2023-06-12 上传
2023-02-15 上传