序列卷积用竖乘法解析——离散时间信号处理详解

需积分: 22 10 下载量 46 浏览量 更新于2024-08-24 收藏 11.03MB PPT 举报
在清华大学程佩青教授的《数字信号处理》第三版课件中,章节一深入探讨了离散时间信号与系统的基本概念。课程的核心知识点包括: 1. 序列与信号类型:离散时间信号是自变量取离散值,函数值连续的信号,如通过对连续时间模拟信号如语音或电视信号等进行等间距采样得到。离散时间信号可以用数字形式表示为有序序列,如xa(nT),其中n为整数,取值对应信号的采样点。 2. 序列的表示方法:离散时间信号可以使用公式表示法、图形表示法或集合符号表示,例如单位抽样序列和单位阶跃序列是两种基本序列,单位抽样序列是每个点取值为0或1,单位阶跃序列则在n=0处突然跃变。 3. 基本运算:课程强调对有限长序列进行卷积操作时,应采用竖乘法(也称为直积),特点是各点乘积独立计算,不进行跨点进位,且卷积结果的起始序号由两个输入序列的起始序号之和确定。 4. 系统理论:介绍了线性/移不变/因果/稳定的离散时间系统概念,以及如何通过判断系统是否满足这些性质来分析其行为。常系数线性差分方程是描述离散时间系统的数学工具,用迭代法求解单位抽样响应是其重要内容。 5. 奈奎斯特抽样定理:课程涵盖了连续时间信号的时域抽样理论,以及抽样恢复过程的重要性,这对于理解数字信号处理中的采样和重构过程至关重要。 程佩青教授的课件旨在让学生掌握序列的定义、运算及周期性判断,离散时间系统的特性,以及如何应用这些知识解决实际问题。通过深入学习,学生能够理解和应用离散时间信号处理的基本原理,为后续的信号处理技术打下坚实基础。