动态规划解决合并石子问题
需积分: 0 142 浏览量
更新于2024-08-04
收藏 19KB DOCX 举报
"这篇资源是关于动态规划在解决合并石子问题中的应用,具体是一个算法题目,要求将一排石子合并成一堆,每次合并相邻的两堆,并记录合并的得分,目标是最小化得分。文章提供了四种不同的动态规划解决方案,并包含样例输入和输出。"
在动态规划专题中,"合并石子问题"是一个经典的实例,它考察了如何通过递归和记忆化搜索来解决复杂的问题。问题描述如下:有一排N堆石子,每堆石子的数量不同,每次可以选择相邻的两堆合并成新的一堆,并且将新堆的石子数作为得分。目标是找到一种合并策略,使得最终合并成一堆时的得分最小。
问题的关键在于利用动态规划来减少重复计算。以下是四种不同的动态规划解决方案:
1. **自顶向下,使用备忘录数组的动态规划算法** (StonesCombined):
这种方法是从大问题开始,逐步分解为小问题,通过一个二维数组B[][]存储已经计算过的子问题的结果,避免重复计算。在遍历过程中,使用一个二维数组S[][]记录最优解的分隔位置,以便于回溯。
2. **自底向上的动态规划算法:递增括号中石子堆数量** (StonesCombined_2):
这种算法从最基础的两堆石子开始,逐步增加石子堆的数量,每次计算出新的最优解。通过累加前i堆石子的总数和计算i堆石子合并的得分,可以得到第i堆到第j堆的最优解。
3. **自底向上的动态规划算法:逆序扫描** (StonesCombined_3):
与上一种方法类似,但这里可能从后往前计算,有时在某些问题中可以提高效率,因为某些状态可能会更早被计算到。
4. **自底向上的动态规划算法:顺序扫描** (StonesCombined_4):
这种方法从最小的子问题开始,按照顺序逐步构建更大的子问题的解,同样避免了重复计算。
在代码实现中,`Sum[]`数组用于存储前i堆石子的总数量,`flag[]`数组用于标记某堆石子是否已被处理过,`main()`函数中通过`cin`读取输入数据,然后调用相应的动态规划函数计算最小得分并输出结果。
对于样例输入:
```markdown
7
13 7 8 1 6 2 1 4 1 8
```
对应的样例输出应该是:
```markdown
239
```
这意味着在满足题意的情况下,将这7堆石子合并成一堆的最小得分为239。
这四个算法虽然实现方式不同,但它们的核心都是利用动态规划的思路,通过存储子问题的解来避免重复计算,从而有效地解决了合并石子问题。在实际编程中,我们可以根据问题的具体情况和性能要求选择合适的方法。
点击了解资源详情
点击了解资源详情
121 浏览量
点击了解资源详情
254 浏览量
点击了解资源详情
304 浏览量
点击了解资源详情
145 浏览量
glowlaw
- 粉丝: 27
- 资源: 274
最新资源
- osmdroid基础符号化.zip
- TP003-呼吸灯实验.zip
- aurelia:一个帮助极光狩猎的应用程序
- 本科毕业设计论文-中文谣言检测.zip
- 如何...以ac#或其他Visual Studio语言使用文件的cobol数据集定义?
- 景观
- Animated-Transition-Collection:一组易于使用的 UIViewController 动画过渡
- 易语言文件操作
- baresip:Baresip是具有音频和视频支持的模块化SIP用户代理-开源
- CardView:材料设计卡? 多么酷啊 !
- Gonna-Save-Heroines-Project
- 毕业设计最终源码.zip
- 易语言文件批量更名
- TP004-流水灯实验.zip
- 非洲:展示非洲野生动植物之美的应用程序
- recursion:使用 Java 的递归函数示例