没有合适的资源?快使用搜索试试~ 我知道了~
首页pandas获取groupby分组里最大值所在的行方法
pandas获取groupby分组里最大值所在的行方法 如下面这个DataFrame,按照Mt分组,取出Count最大的那行 import pandas as pd df = pd.DataFrame({'Sp':['a','b','c','d','e','f'], 'Mt':['s1', 's1', 's2','s2','s2','s3'], 'Value':[1,2,3,4,5,6], 'Count':[3,2,5,10,10,6]}) df Count Mt Sp Value 0 3 s1 a 1 1 2 s1 b 2 2 5 s2 c 3 3 10 s2
资源详情
资源评论
资源推荐

pandas获取获取groupby分组里最大值所在的行方法分组里最大值所在的行方法
pandas获取获取groupby分组里最大值所在的行方法分组里最大值所在的行方法
如下面这个DataFrame,按照Mt分组,取出Count最大的那行
import pandas as pd
df = pd.DataFrame({'Sp':['a','b','c','d','e','f'], 'Mt':['s1', 's1', 's2','s2','s2','s3'], 'Value':[1,2,3,4,5,6], 'Count':[3,2,5,10,10,6]})
df
Count Mt Sp Value
0 3 s1 a 1
1 2 s1 b 2
2 5 s2 c 3
3 10 s2 d 4
4 10 s2 e 5
5 6 s3 f 6
方法方法1:在分组中过滤出:在分组中过滤出Count最大的行最大的行
df.groupby('Mt').apply(lambda t: t[t.Count==t.Count.max()])
Count Mt Sp Value
Mt
s1 0 3 s1 a 1
s2 3 10 s2 d 4
4 10 s2 e 5
s3 5 6 s3 f 6
方法方法2:用:用transform获取原获取原dataframe的的index,然后过滤出需要的行,然后过滤出需要的行
print df.groupby(['Mt'])['Count'].agg(max)
idx=df.groupby(['Mt'])['Count'].transform(max)
print idx
idx1 = idx == df['Count'] print idx1
df[idx1]
Mt
s1 3
s2 10
s3 6
Name: Count, dtype: int64
0 3
1 3
2 10
3 10
4 10
5 6
dtype: int64
0 True
1 False
2 False
3 True
4 True
5 True
dtype: bool
Count Mt Sp Value
0 3 s1 a 1
3 10 s2 d 4



















weixin_38742460
- 粉丝: 19
- 资源: 912
上传资源 快速赚钱
我的内容管理 收起
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助

会员权益专享
安全验证
文档复制为VIP权益,开通VIP直接复制

评论0