没有合适的资源?快使用搜索试试~ 我知道了~
首页使用机器学习和大数据技术预测作物产量的方法-研究论文
农业是我们国家的主要生计来源。 当前面临水资源短缺、供需失控的成本以及天气不确定性等挑战,农民必须配备智能农业。 尤其需要解决由于气候变化不确定、灌溉设施差、土壤肥力下降和传统耕作技术而导致作物产量低的问题。 机器学习就是一种用于预测农业作物产量的技术。 各种机器学习技术如预测、分类、回归和聚类被用来预测作物产量。 人工神经网络、支持向量机、线性和逻辑回归、决策树、朴素贝叶斯是一些用于实现预测的算法。 然而,从可用算法池中选择合适的算法给研究人员带来了关于所选作物的挑战。 在本文中,对各种机器学习算法如何用于预测作物产量进行了调查。 已经提出了一种在大数据计算范式中使用机器学习技术预测作物产量的方法。
资源详情
资源评论
资源推荐

http://www.iaeme.com/IJCET/index.asp 110 editor@iaeme.com
International Journal of Computer Engineering and Technology (IJCET)
Volume 10, Issue 03, May-June 2019, pp. 110-118, Article ID: IJCET_10_03_013
Available online at http://www.iaeme.com/ijcet/issues.asp?JType=IJCET&VType=10&IType=3
Journal Impact Factor (2019): 10.5167 (Calculated by GISI) www.jifactor.com
ISSN Print: 0976-6367 and ISSN Online: 0976–6375
© IAEME Publication
AN APPROACH FOR PREDICTION OF CROP
YIELD USING MACHINE LEARNING AND BIG
DATA TECHNIQUES
Kodimalar Palanivel
Department of Computer Science,
Bharathidasan University Constituent Arts & Science College,
Navalurkuttapattu, Tiruchirappalli, TamilNadu, India
*
Chellammal Surianarayanan
Department of Computer Science,
Bharathidasan University Constituent Arts & Science College,
Navalurkuttapattu, Tiruchirappalli, TamilNadu, India
*Corresponding Author
ABSTRACT
Agriculture is the primary source of livelihood which forms the backbone of our country. Current
challenges of water shortages, uncontrolled cost due to demand-supply, and weather
uncertainty necessitate farmers to be equipped with smart farming. In particular, low
yield of crops due to uncertain climatic changes, poor irrigation facilities, reduction
in soil fertility and traditional farming techniques need to be addressed. Machine
learning is one such technique employed to predict crop yield in agriculture. Various machine learning
techniques such as prediction, classification, regression and clustering are utilized to forecast crop
yield. Artificial neural networks, support vector machines, linear and logistic regression, decision
trees, Naïve Bayes are some of the algorithms used to implement prediction. However, the selection of
the appropriate algorithm from the pool of available algorithms imposes challenge to the researchers
with respect to the chosen crop. In this paper, an investigation has been performed on how various
machine learning algorithms are useful in prediction of crop yield. An approach has been proposed for
prediction of crop yield using machine learning techniques in big data computing paradigm.
Key words: ISTA, IISTA, image restoration, inverse problems, l
0
norm, l
1
norm, l
2
data fidelity term, regularization function, total variation.
Cite this Article: Kodimalar Palanivel and Chellammal Surianarayanan, An
Approach for Prediction of Crop Yield Using Machine Learning and Big Data
Techniques, International Journal of Computer Engineering and Technology 10(3),
2019, pp. 110-118.
http://www.iaeme.com/IJCET/issues.asp?JType=IJCET&VType=10&IType=3
Electronic copy available at: https://ssrn.com/abstract=3555087

















weixin_38743391
- 粉丝: 9
- 资源: 915
上传资源 快速赚钱
我的内容管理 收起
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助

会员权益专享
最新资源
- Xilinx SRIO详解.pptx
- Informatica PowerCenter 10.2 for Centos7.6安装配置说明.pdf
- 现代无线系统射频电路实用设计卷II 英文版.pdf
- 电子产品可靠性设计 自己讲课用的PPT,包括设计方案的可靠性选择,元器件的选择与使用,降额设计,热设计,余度设计,参数优化设计 和 失效分析等
- MPC5744P-DEV-KIT-REVE-QSG.pdf
- 通信原理课程设计报告(ASK FSK PSK Matlab仿真--数字调制技术的仿真实现及性能研究)
- ORIGIN7.0使用说明
- 在VMware Player 3.1.3下安装Redhat Linux详尽步骤
- python学生信息管理系统实现代码
- 西门子MES手册 13 OpcenterEXCR_PortalStudio1_81RB1.pdf
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制

评论0