没有合适的资源?快使用搜索试试~ 我知道了~
首页使用DataFrame删除行和列的实例讲解
资源详情
资源评论
资源推荐

使用使用DataFrame删除行和列的实例讲解删除行和列的实例讲解
下面小编就为大家分享一篇使用DataFrame删除行和列的实例讲解,具有很好的参考价值,希望对大家有所帮
助。一起跟随小编过来看看吧
本文通过一个csv实例文件来展示如何删除Pandas.DataFrame的行和列
数据文件名为:example.csv
内容为:内容为:
date spring summer autumn winter
2000 12.2338809 16.90730113 15.69238313 14.08596223
2001 12.84748057 16.75046873 14.51406637 13.5037456
2002 13.558175 17.2033926 15.6999475 13.23365247
2003 12.6547247 16.89491533 15.6614647 12.84347867
2004 13.2537298 17.04696657 15.20905377 14.3647912
2005 13.4443049 16.7459822 16.62218797 11.61082257
2006 13.50569567 16.83357857 15.4979282 12.19934363
2007 13.48852623 16.66773283 15.81701437 13.7438216
2008 13.1515319 16.48650693 15.72957287 12.93233587
2009 13.45771543 16.63923783 18.26017997 12.65315943
2010 13.1945485 16.7286889 15.42635267 13.8833583
2011 14.34779417 16.68942103 14.17658043 12.36654197
2012 13.6050867 17.13056773 14.71796777 13.29255243
2013 13.02790787 17.38619343 16.20345497 13.18612133
2014 12.74668163 16.54428687 14.7367682 12.87065125
2015 13.465904 16.50612317 12.44243663 11.0181384
season spring summer autumn winter
slope 0.0379691374 -0.01164689167 -0.07913844113 -0.07765274553
删除行删除行
In [1]:
import numpy as np
import pandas as pd
odata = pd.read_csv('example.csv')
odata
Out[1]:
date spring summer autumn winter
0 2000 12.2338809 16.9073011333 15.6923831333 14.0859622333
1 2001 12.8474805667 16.7504687333 14.5140663667 13.5037456
2 2002 13.558175 17.2033926 15.6999475 13.2336524667
3 2003 12.6547247 16.8949153333 15.6614647 12.8434786667
4 2004 13.2537298 17.0469665667 15.2090537667 14.3647912
5 2005 13.4443049 16.7459822 16.6221879667 11.6108225667
6 2006 13.5056956667 16.8335785667 15.4979282 12.1993436333
7 2007 13.4885262333 16.6677328333 15.8170143667 13.7438216
8 2008 13.1515319 16.4865069333 15.7295728667 12.9323358667
9 2009 13.4577154333 16.6392378333 18.2601799667 12.6531594333
10 2010 13.1945485 16.7286889 15.4263526667 13.8833583
11 2011 14.3477941667 16.6894210333 14.1765804333 12.3665419667
12 2012 13.6050867 17.1305677333 14.7179677667 13.2925524333
13 2013 13.0279078667 17.3861934333 16.2034549667 13.1861213333
14 2014 12.7466816333 16.5442868667 14.7367682 12.8706512467
15 2015 13.465904 16.5061231667 12.4424366333 11.0181384
16 season spring summer autumn winter
17 slope 0.037969137402 -0.0116468916667 -0.0791384411275 -0.0776527455294
.drop()方法如果不设置参数inplace=True,则只能在生成的新数据块中实现删除效果,而不能删除原有数据块的相应行。
In [2]:
data = odata.drop([16,17])
odata
Out[2]:
date spring summer autumn winter
0 2000 12.2338809 16.9073011333 15.6923831333 14.0859622333
1 2001 12.8474805667 16.7504687333 14.5140663667 13.5037456
2 2002 13.558175 17.2033926 15.6999475 13.2336524667


















安全验证
文档复制为VIP权益,开通VIP直接复制

评论0