[m,n] = size(data); data = (data - repmat(mean(data),m,1))./repmat(std(data),m,1);
时间: 2024-06-02 07:08:08 浏览: 72
这段代码的功能是将矩阵data进行归一化处理,使每一列的数据都满足零均值单位方差的要求。具体来说,代码中首先计算出矩阵data的大小并赋值给m和n。然后,将矩阵data减去均值向量的重复矩阵,即repmat(mean(data),m,1),可以得到每个样本点与该列的均值的差值。接着,将上述结果除以标准差向量的重复矩阵,即repmat(std(data),m,1),即可得到每个样本点的归一化结果。
相关问题
avg = repmat(mean(data),r,1); data = data./avg;
这段代码的作用是将矩阵data中的每一列都除以该列的平均值,并将结果保存到新的矩阵中。其中,mean(data)计算出data每一列的平均值,repmat(mean(data),r,1)将该平均值矩阵复制成r行,1列的矩阵,即将每一行都设为平均值,最后将data矩阵中的每一个元素都除以对应列的平均值。这个操作可以用来将不同列之间的数据进行归一化处理,使得不同列的数据具有可比性。
% 读入数据并进行预处理 data = [0.1, 0.2, 0.3, 0.1; 0.3, 0.2, 0.1, 0.2; 0.5, 0.6, 0.5, 0.4]; logData = log(data); ageMean = mean(data, 2); timeMean = mean(data, 1); % 建立模型 k = 1.5;% 设定初值 gamma = logData - ageMean*ones(1,length(timeMean)) - k*(ones(length(ageMean),1)*timeMean); phi = mean(gamma,2); kappa = logData - ageMean*ones(1,length(timeMean)) - phi*ones(1,length(timeMean)) - k*(ones(length(ageMean),1)*timeMean); % 对kappa进行奇异值分解 [U,S,V] = svd(kappa); K = 1; % 选择前K个主成分 uk = U(:,1:K); sk = S(1:K,1:K); vk = V(:,1:K); kappaNew = uk * sk * vk'; phiNew = mean(kappaNew, 2); gammaNew = kappaNew - phiNew * ones(1, length(timeMean)); % 参数估计和预测 y = reshape(logData - phi*ones(1, length(timeMean)), 1, []); x(:,1) = reshape(gammaNew, 1, []); for i = 1:K x(:,i+1) = U(:,i)' * (logData - phi.*ones(size(logData,1),1)); end b = x\y; futureTime = [1:2]'+timeMean(end); % 对未来年份数据进行预测(2023, 2024年) ages = [1:size(data,1)]'; logDataPred = repmat(phiNew, [1, length(futureTime)]) + gammaNew*k + ageMean*ones(1,length(futureTime)) + [ones(size(ages)),U(:,1:K)]*b; dataPred = exp(logDataPred); % 输出结果 disp("数据:") disp(data); disp("拟合数据:") disp(dataPred); 代码中(:,i+1) = U(:,i)' * (logData - phi.*ones(size(logData,1),1));无法执行赋值,因为左侧的大小为 12×1,右侧的大小为 1×4。
这个错误是因为左侧的大小为12×1,而右侧的大小为1×4,无法进行赋值。可能是因为你在for循环中没有正确地将右侧的结果转置。你可以尝试修改代码为:
```
for i = 1:K
x(:,i+1) = (U(:,i)' * (logData - phi.*ones(size(logData,1),1)))';
end
```
将右侧的结果转置即可解决该问题。
阅读全文
相关推荐













