为什么X=np.append(np.ones((m,1)),data_n[:,0].reshape(m,1),axis=1)要给X矩阵添加一列
时间: 2023-06-13 11:08:08 浏览: 88
在机器学习中,我们经常需要处理多维数据,其中一个重要的操作是将特征(features)和标签(labels)分离开来。在这种情况下,我们通常将特征存储在一个矩阵中,每一行代表一个样本,每一列代表一个特征。而将标签存储在一个向量中。
在这个矩阵中,我们通常需要添加一个额外的列,这个列的元素都是1。这是因为在很多机器学习算法中,我们需要对数据进行归一化处理,即将每个特征的值缩放到一个相同的范围内。在这种情况下,我们需要将每个特征都乘以一个权重(weight),这个权重可以看做是这个特征的重要性。而对于这个额外的列,我们通常将其看做是一个偏置(bias),它的权重在算法中也需要进行学习。这样,我们就可以将每个特征乘以对应的权重,并加上一个偏置,得到最终的预测值。
因此,为了方便进行这些操作,我们需要在特征矩阵中添加一个额外的列,这个列的元素都是1。在这个例子中,X矩阵的第一列都是1,代表了偏置。
相关问题
X=np.append(np.ones((m,1)),data_n[:,0].reshape(m,1),axis=1)
这行代码的作用是将一个 mx1 的一维数组 data_n[:,0] 转换成一个 mx2 的矩阵 X,其中第一列都是 1,第二列是原来的数组。这个过程可以用以下步骤实现:
1. 使用 data_n[:,0].reshape(m,1) 将一维数组变成二维数组,其中第一维长度为 m,第二维长度为 1。
2. 使用 np.ones((m,1)) 创建一个 mx1 的全是 1 的矩阵。
3. 使用 np.append 将两个矩阵按列合并,axis=1 表示按列合并,得到一个 mx2 的矩阵 X。
import numpy as np import random from scipy import stats import pandas as pd import matplotlib.pyplot as plt np.random.seed(1) a=[] for p in range(1,11): k=8 n=100 Sigma = [[1,0.6+0.04p],[0.6+0.04p,1]] res1 = [] for i in range(1,1001): data=np.random.multivariate_normal(np.zeros(2), Sigma, n) X_data=data[:,0] Y_data=data[:,1] Sx=sorted(X_data) Sy=sorted(Y_data) inter_x=np.arange(min(X_data),max(X_data)+(max(X_data)-min(X_data))/k, (max(X_data)-min(X_data))/k) inter_y=np.arange(min(Y_data),max(Y_data)+(max(Y_data)-min(Y_data))/k, (max(Y_data)-min(Y_data))/k) left_inter_x=np.dot(np.ones((n,1)),inter_x[0:k].reshape(1,k)) right_inter_x=np.dot(np.ones((n,1)),inter_x[1:(k+1)].reshape(1,k)) left_inter_y=np.dot(np.ones((n,1)),inter_y[0:k].reshape(1,k)) right_inter_y=np.dot(np.ones((n,1)),inter_y[1:(k+1)].reshape(1,k)) Data1=np.dot(X_data.reshape(n,1), np.ones((1,k))) Data2=np.dot(Y_data.reshape(n,1), np.ones((1,k))) frequx=(left_inter_x<=Data1)(Data1<right_inter_x) frequy=(left_inter_y<=Data2)(Data2<right_inter_y) frequxy = np.dot(frequx.astype(int).T,frequy.astype(int)) pi=np.sum(frequxy,axis=0)/n pj=np.sum(frequxy,axis=1)/n pij=np.dot(pi.reshape(k,1),pj.reshape(1,k)) A=(frequxy-npij)**2/(npij) A[np.isnan(A)]=0 A[np.isinf(A)]=0 stat1=np.sum(A) res1.append(int(stat1>stats.chi2.ppf(0.95,(k-1)**2))) a[p]=np.mean(res1) plt.plot(a)有哪些错误
该代码存在以下错误:
1. 缺少函数声明和主程序入口。
2. 行首缺少空格,不符合 Python 的 PEP8 代码规范。
3. 第一行导入 numpy 库和 random 库,但是代码中没有使用 random 库,可以删除。
4. 缺少对 scipy 库和 pandas 库的导入。
5. 第5行代码中的 Sigma 变量没有正确的缩进,应该缩进4个空格。
6. 第6行代码中的 res1 变量没有正确的缩进,应该缩进4个空格。
7. 第7行代码中应该在 import 后面加上空格。
8. 第9行代码中的 np.random.seed(1) 应该缩进4个空格。
9. 第11行代码中的 a=[] 应该缩进4个空格。
10. 第13行代码中的 p 变量没有正确的缩进,应该缩进4个空格。
11. 第14行代码中的 n 变量没有正确的缩进,应该缩进4个空格。
12. 第15行代码中的 Sigma 变量应该缩进4个空格。
13. 第16-30行代码是一个 for 循环,缩进不正确,应该缩进4个空格。
14. 第17-29行代码中的变量应该缩进8个空格。
15. 第18-20行代码中的 X_data, Y_data, Sx, Sy, inter_x, inter_y 等变量没有正确的缩进,应该缩进8个空格。
16. 第21-24行代码中的 left_inter_x, right_inter_x, left_inter_y, right_inter_y 等变量没有正确的缩进,应该缩进8个空格。
17. 第26行代码中的 Data1, Data2 变量没有正确的缩进,应该缩进8个空格。
18. 第27-28行代码中的 frequx, frequy 变量没有正确的缩进,应该缩进8个空格。
19. 第29行代码中的 frequxy 变量没有正确的缩进,应该缩进8个空格。
20. 第30行代码中的 pi, pj, pij, A 变量没有正确的缩进,应该缩进8个空格。
21. 第32行代码中的 np.isnan(A) 和 np.isinf(A) 应该缩进8个空格。
22. 第34行代码中的 a[p]=np.mean(res1) 应该缩进4个空格。
23. 最后一行代码中的 plt.plot(a) 应该缩进4个空格。
建议修改后的代码如下所示:
```python
import numpy as np
from scipy import stats
import pandas as pd
import matplotlib.pyplot as plt
def main():
np.random.seed(1)
a = [0] * 11
for p in range(1, 11):
k = 8
n = 100
Sigma = [[1, 0.6 + 0.04 * p], [0.6 + 0.04 * p, 1]]
res1 = []
for i in range(1, 1001):
data = np.random.multivariate_normal(np.zeros(2), Sigma, n)
X_data = data[:, 0]
Y_data = data[:, 1]
Sx = sorted(X_data)
Sy = sorted(Y_data)
inter_x = np.arange(min(X_data), max(X_data) + (max(X_data) - min(X_data)) / k, (max(X_data) - min(
X_data)) / k)
inter_y = np.arange(min(Y_data), max(Y_data) + (max(Y_data) - min(Y_data)) / k, (max(Y_data) - min(
Y_data)) / k)
left_inter_x = np.dot(np.ones((n, 1)), inter_x[0:k].reshape(1, k))
right_inter_x = np.dot(np.ones((n, 1)), inter_x[1:(k + 1)].reshape(1, k))
left_inter_y = np.dot(np.ones((n, 1)), inter_y[0:k].reshape(1, k))
right_inter_y = np.dot(np.ones((n, 1)), inter_y[1:(k + 1)].reshape(1, k))
Data1 = np.dot(X_data.reshape(n, 1), np.ones((1, k)))
Data2 = np.dot(Y_data.reshape(n, 1), np.ones((1, k)))
frequx = (left_inter_x <= Data1) * (Data1 < right_inter_x)
frequy = (left_inter_y <= Data2) * (Data2 < right_inter_y)
frequxy = np.dot(frequx.astype(int).T, frequy.astype(int))
pi = np.sum(frequxy, axis=0) / n
pj = np.sum(frequxy, axis=1) / n
pij = np.dot(pi.reshape(k, 1), pj.reshape(1, k))
npij = n * pij
A = (frequxy - npij) ** 2 / (npij)
A[np.isnan(A)] = 0
A[np.isinf(A)] = 0
stat1 = np.sum(A)
res1.append(int(stat1 > stats.chi2.ppf(0.95, (k - 1) ** 2)))
a[p] = np.mean(res1)
plt.plot(a)
if __name__ == '__main__':
main()
```
阅读全文