修改function [x, iter] = jacobi(A, b, x0, tol, max_iter) function main() n = 10; % 矩阵维度 A = generatePentaDiagonalMatrix(n); % 生成五对角矩阵 x0 = zeros(n, 1); % 初始向量 b = ones(n, 1); % 右端向量 tol = 1e-6; % 迭代误差要求 % 使用Jacobi迭代法求解 [x_jacobi, iter_jacobi] = jacobi(A, b, x0, tol, 1000); fprintf("Jacobi迭代法 - 迭代次数: %d\n", iter_jacobi); % 使用Gauss-Seidel迭代法求解 end function A = generatePentaDiagonalMatrix(n) % 生成五对角矩阵 diag_main = 3 * ones(n, 1); diag_sub = -1/2 * ones(n-1, 1); diag_super = -1/2 * ones(n-1, 1); diag_sub_sub = -1/4 * ones(n-2, 1); diag_super_super = -1/4 * ones(n-2, 1); A = diag(diag_main) + diag(diag_sub, -1) + diag(diag_super, 1) + diag(diag_sub_sub, -2) + diag(diag_super_super, 2); end n = size(A, 1); x = x0; iter = 0; while iter < max_iter x_new = zeros(n, 1); for i = 1:n x_new(i) = (b(i) - A(i, [1:i-1, i+1:n]) * x([1:i-1, i+1:n])) / A(i, i); end if norm(x_new - x) < tol break; end x = x_new; iter = iter + 1; end if iter == max_iter disp("Jacobi迭代法未收敛!"); end end
时间: 2024-04-10 21:27:47 浏览: 193
修改后的代码如下:
```matlab
function [x, iter] = jacobi(A, b, x0, tol, max_iter)
n = size(A, 1);
x = x0;
iter = 0;
while iter < max_iter
x_new = zeros(n, 1);
for i = 1:n
x_new(i) = (b(i) - A(i, [1:i-1, i+1:n]) * x([1:i-1, i+1:n])) / A(i, i);
end
if norm(x_new - x) < tol
break;
end
x = x_new;
iter = iter + 1;
end
if iter == max_iter
disp("Jacobi迭代法未收敛!");
end
end
function main()
n = 10; % 矩阵维度
A = generatePentaDiagonalMatrix(n); % 生成五对角矩阵
x0 = zeros(n, 1); % 初始向量
b = ones(n, 1); % 右端向量
tol = 1e-6; % 迭代误差要求
% 使用Jacobi迭代法求解
[x_jacobi, iter_jacobi] = jacobi(A, b, x0, tol, 1000);
fprintf("Jacobi迭代法 - 迭代次数: %d\n", iter_jacobi);
% 使用Gauss-Seidel迭代法求解
[x_gs, iter_gs] = gaussSeidel(A, b, x0, tol, 1000);
fprintf("Gauss-Seidel迭代法 - 迭代次数: %d\n", iter_gs);
end
function A = generatePentaDiagonalMatrix(n)
% 生成五对角矩阵
diag_main = 3 * ones(n, 1);
diag_sub = -1/2 * ones(n-1, 1);
diag_super = -1/2 * ones(n-1, 1);
diag_sub_sub = -1/4 * ones(n-2, 1);
diag_super_super = -1/4 * ones(n-2, 1);
A = diag(diag_main) + diag(diag_sub, -1) + diag(diag_super, 1) + diag(diag_sub_sub, -2) + diag(diag_super_super, 2);
end
```
在`main`函数中,我添加了使用Gauss-Seidel迭代法求解的部分。你可以根据需要填充该部分的代码。同时,我还修复了代码末尾的错误,将闭合的`end`移到正确的位置。
阅读全文