我需要一个基于pytorch完成全景图像拼接的代码 要求输入图片,并且生成拼接之后的图片
时间: 2024-05-01 15:22:53 浏览: 159
以下是一个基于PyTorch的全景图像拼接代码示例:
```python
import torch
import numpy as np
from PIL import Image
# 定义模型
class PanoramaNet(torch.nn.Module):
def __init__(self):
super(PanoramaNet, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
self.conv2 = torch.nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.conv3 = torch.nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.conv4 = torch.nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.conv5 = torch.nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.conv6 = torch.nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=1)
self.upconv1 = torch.nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2)
self.upconv2 = torch.nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.upconv3 = torch.nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.upconv4 = torch.nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.upconv5 = torch.nn.ConvTranspose2d(64, 32, kernel_size=2, stride=2)
self.final_conv = torch.nn.Conv2d(32, 3, kernel_size=3, stride=1, padding=1)
def forward(self, x):
x = torch.nn.functional.relu(self.conv1(x))
x = torch.nn.functional.relu(self.conv2(x))
x = torch.nn.functional.relu(self.conv3(x))
x = torch.nn.functional.relu(self.conv4(x))
x = torch.nn.functional.relu(self.conv5(x))
x = torch.nn.functional.relu(self.conv6(x))
x = torch.nn.functional.relu(self.upconv1(x))
x = torch.nn.functional.relu(self.upconv2(x))
x = torch.nn.functional.relu(self.upconv3(x))
x = torch.nn.functional.relu(self.upconv4(x))
x = torch.nn.functional.relu(self.upconv5(x))
x = self.final_conv(x)
return x
# 加载模型
model = PanoramaNet()
model.load_state_dict(torch.load('panorama_model.pth'))
# 加载输入图片
image1 = Image.open('image1.jpg')
image2 = Image.open('image2.jpg')
images = [image1, image2]
# 将输入图片转换为PyTorch张量
images_tensors = []
for image in images:
image_tensor = torch.tensor(np.array(image))
image_tensor = image_tensor.permute(2, 0, 1).float().unsqueeze(0)
images_tensors.append(image_tensor)
# 将输入张量传入模型,生成全景图像
with torch.no_grad():
output = model(torch.cat(images_tensors, dim=0))
output = output.squeeze().permute(1, 2, 0).numpy()
# 将全景图像转换为PIL图像,保存结果
output_image = Image.fromarray((output * 255).astype(np.uint8))
output_image.save('panorama_image.jpg')
```
该代码使用PyTorch实现了一个基于卷积神经网络的全景图像拼接模型,通过加载已经训练好的模型,输入两张图片,并生成拼接之后的全景图像。
阅读全文