y = 2 * torch.dot(x, x) y.backward() x.grad x.grad.zero_() y = x.sum() y.backward() x.grad解释这几行代码的含义,以及最后输出的结果是什么
时间: 2024-05-21 22:14:33 浏览: 157
浅谈Pytorch中的自动求导函数backward()所需参数的含义
这几行代码是使用 PyTorch 进行自动求导的例子。
首先,我们定义了一个二次函数 $y=2x^Tx$,其中 $x$ 是一个向量。然后我们通过调用 `y.backward()` 来计算 $y$ 对 $x$ 的梯度。这里的梯度是一个向量,即 $[∂y/∂x_0, ∂y/∂x_1, …, ∂y/∂x_n]$,其中 $n$ 是向量 $x$ 的维度。
接下来,我们打印出了 `x.grad`。这是一个与 $x$ 同大小的向量,其中的每个元素都是 $y$ 对应的梯度。也就是说,`x.grad[i]` 是 $∂y/∂x_i$。
然后,我们通过调用 `x.grad.zero_()` 将 `x.grad` 中的所有元素都设置为零,以便进行新的计算。
最后,我们定义了另一个函数 $y=x.sum()$,并计算了 $y$ 关于 $x$ 的梯度。我们再次打印 `x.grad`,可以看到它现在已经被更新了。
最后输出的结果是一个向量,其中每个元素表示 $y$ 对应的梯度,即 `[2*x[0], 2*x[1], ..., 2*x[n]]`。
阅读全文