bicubic_img = img.resize((int(img.width * scaling_factor),
时间: 2023-06-05 18:47:25 浏览: 41
bicubic_img是一个经过双三次插值算法处理后的图像。该行代码中,通过Python的PIL库中的resize()函数,将原图像img按照指定的缩放因子scaling_factor进行缩放,返回一个新的图像对象bicubic_img。在此过程中,使用了双三次插值方法对图像进行插值处理,将缩放后的图像进行平滑处理,使得缩放后的图像更加清晰、细腻、真实。双三次插值算法是图像处理中比较常用的一种插值算法,在缩放、旋转、扭曲等图像变换中起到重要作用。其基本原理是通过对像素点周围16个相邻像素点的值进行加权平均,给定目标像素点赋予一个新的灰度值,使得像素点之间的过渡更加自然、平滑,从而达到优化图像质量的目的。
相关问题
代码import os import numpy as np import nibabel as nib from PIL import Image # 创建保存路径 save_path = 'C:/Users/Administrator/Desktop/2D-LiTS2017' if not os.path.exists(save_path): os.makedirs(save_path) if not os.path.exists(os.path.join(save_path, 'image')): os.makedirs(os.path.join(save_path, 'image')) if not os.path.exists(os.path.join(save_path, 'label')): os.makedirs(os.path.join(save_path, 'label')) # 加载数据集 data_path = 'D:/BaiduNetdiskDownload/LiTS2017' img_path = os.path.join(data_path, 'Training Batch 1') label_path = os.path.join(data_path, 'Training Batch 2') # 转换图像 for file in sorted(os.listdir(img_path)): if file.endswith('.nii'): img_file = os.path.join(img_path, file) img = nib.load(img_file).get_fdata() img = np.transpose(img, (2, 0, 1)) # 转换为z, x, y for i in range(img.shape[0]): img_slice = img[i, :, :] img_slice = (img_slice - np.min(img_slice)) / (np.max(img_slice) - np.min(img_slice)) * 255 # 归一化到0-255 img_slice = img_slice.astype(np.uint8) img_slice = np.stack([img_slice]*3, axis=2) # 转换为三通道图像 img_name = file[:-4] + '' + str(i).zfill(3) + '.png' img_file_save = os.path.join(save_path, 'image', img_name) Image.fromarray(img_slice).save(img_file_save) # 转换标签 for file in sorted(os.listdir(label_path)): if file.endswith('.nii'): label_file = os.path.join(label_path, file) label = nib.load(label_file).get_fdata() label = np.transpose(label, (2, 0, 1)) # 转换为z, x, y for i in range(label.shape[0]): label_slice = label[i, :, :] label_slice[label_slice == 1] = 255 # 肝脏灰度值设为255 label_slice[label_slice == 2] = 128 # 肝脏肿瘤灰度值设为128 label_slice = label_slice.astype(np.uint8) label_name = file[:-4] + '' + str(i).zfill(3) + '.png' label_file_save = os.path.join(save_path, 'label', label_name) Image.fromarray(label_slice).save(label_file_save)出现scaled = scaled.astype(np.promote_types(scaled.dtype, dtype), copy=False) MemoryError错误,怎么修改?给出完整代码
这个错误通常意味着你的计算机没有足够的内存来处理数组。可能需要减少转换图像的尺寸或者使用更高效的算法。以下是一个可能的修改建议:
```python
import os
import numpy as np
import nibabel as nib
from PIL import Image
# 创建保存路径
save_path = 'C:/Users/Administrator/Desktop/2D-LiTS2017'
if not os.path.exists(save_path):
os.makedirs(save_path)
if not os.path.exists(os.path.join(save_path, 'image')):
os.makedirs(os.path.join(save_path, 'image'))
if not os.path.exists(os.path.join(save_path, 'label')):
os.makedirs(os.path.join(save_path, 'label'))
# 加载数据集
data_path = 'D:/BaiduNetdiskDownload/LiTS2017'
img_path = os.path.join(data_path, 'Training Batch 1')
label_path = os.path.join(data_path, 'Training Batch 2')
# 转换图像
for file in sorted(os.listdir(img_path)):
if file.endswith('.nii'):
img_file = os.path.join(img_path, file)
img = nib.load(img_file).get_fdata()
img = np.transpose(img, (2, 0, 1)) # 转换为z, x, y
for i in range(img.shape[0]):
img_slice = img[i, :, :]
img_slice = (img_slice - np.min(img_slice)) / (np.max(img_slice) - np.min(img_slice)) * 255 # 归一化到0-255
img_slice = img_slice.astype(np.uint8)
img_slice = np.stack([img_slice]*3, axis=2) # 转换为三通道图像
#减少图像大小
img_slice = np.array(Image.fromarray(img_slice).resize((512, 512), resample=Image.BICUBIC))
img_name = file[:-4] + '' + str(i).zfill(3) + '.png'
img_file_save = os.path.join(save_path, 'image', img_name)
Image.fromarray(img_slice).save(img_file_save)
# 转换标签
for file in sorted(os.listdir(label_path)):
if file.endswith('.nii'):
label_file = os.path.join(label_path, file)
label = nib.load(label_file).get_fdata()
label = np.transpose(label, (2, 0, 1)) # 转换为z, x, y
for i in range(label.shape[0]):
label_slice = label[i, :, :]
label_slice[label_slice == 1] = 255 # 肝脏灰度值设为255
label_slice[label_slice == 2] = 128 # 肝脏肿瘤灰度值设为128
label_slice = label_slice.astype(np.uint8)
label_name = file[:-4] + '' + str(i).zfill(3) + '.png'
label_file_save = os.path.join(save_path, 'label', label_name)
Image.fromarray(label_slice).save(label_file_save)
```
这里我们使用了 `PIL.Image` 中的 `resize()` 函数来减少图像大小。`resample=Image.BICUBIC` 用于指定插值方法,这里使用了 Bicubic 插值。这个方法可以保留图像的细节,并且可以减少内存使用。你也可以尝试使用其他插值方法。
from PIL import Image, ImageDraw # 将图片平移并旋转 gray2 = Image.fromarray(src) width, height = gray2.size # 计算中心点和X轴角度 center = (max_point[0], max_point[1]) angle = np.arctan2(point2[1] - max_point[1], point2[0] - max_point[0]) * 180 / np.pi img_translated = gray2.transform((width, height), Image.AFFINE, (1, 0, center[0] - width/2, 0, 1, center[1] - height/2), resample=Image.BICUBIC) img_translated_rotated = img_translated.rotate(angle, resample=Image.BICUBIC, expand=True)from PIL import Image, ImageDraw #裁剪 img4 = Image.fromarray(src) width1, height1 = img4.size width2, height2 = img_translated_rotated.size left = (width2 - width1 )/2 top = (height2 - height1 )/2 right = (width2 - width1 )/2 + width1 bottom = (height2 - height1 )/2 + height1 cropped_image = img_translated_rotated.crop((left, top, right, bottom )) 现在已知在旋转前的图片gray2上有对应的点集合points,对点集points进行平移和旋转变换,使得其能在旋转后图片上完全重合的代码
可以参考以下代码:
```python
from PIL import Image, ImageDraw
import numpy as np
# 原始图片
gray2 = Image.fromarray(src)
# 中心点和旋转角度
max_point = (100, 100) # 假设最大点为(100, 100)
point2 = (200, 200) # 假设另一个点为(200, 200)
center = (max_point[0], max_point[1])
angle = np.arctan2(point2[1] - max_point[1], point2[0] - max_point[0]) * 180 / np.pi
# 平移和旋转变换
width, height = gray2.size
img_translated = gray2.transform((width, height), Image.AFFINE, (1, 0, center[0] - width/2, 0, 1, center[1] - height/2), resample=Image.BICUBIC)
img_translated_rotated = img_translated.rotate(angle, resample=Image.BICUBIC, expand=True)
# 裁剪
width1, height1 = gray2.size
width2, height2 = img_translated_rotated.size
left = (width2 - width1 )/2
top = (height2 - height1 )/2
right = (width2 - width1 )/2 + width1
bottom = (height2 - height1 )/2 + height1
cropped_image = img_translated_rotated.crop((left, top, right, bottom))
```
其中,假设最大点为(100, 100)、另一个点为(200, 200),可以根据实际情况修改。
相关推荐













