if self.batch_resize_range is not None: lower_size = self.batch_resize_range[0] upper_size = self.batch_resize_range[1] if self.global_step <= 4: # do the first few batches with max size to avoid later oom new_resize = upper_size else: new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16)) if new_resize != x.shape[2]: x = F.interpolate(x, size=new_resize, mode="bicubic") x = x.detach() return x逐行解析
时间: 2024-02-14 14:19:45 浏览: 68
pytorch dataloader 取batch_size时候出现bug的解决方式
这段代码是在对输入数据进行预处理的基础上,进一步对输入数据进行大小调整,包括以下几个步骤:
1. 判断是否需要对输入数据进行大小调整,这个条件是self.batch_resize_range不为None。self.batch_resize_range是一个二元组,包含了要调整的大小范围,例如(256, 512)表示大小可以调整到256到512之间的任意值。
2. 如果需要进行大小调整,则从self.batch_resize_range中取出调整的下限和上限,并赋值给变量lower_size和upper_size。
3. 判断当前的训练步数self.global_step是否小于等于4,如果是,则将调整大小设为上限,这是因为在训练开始的几个批次中,为了避免内存不足的问题,需要先使用最大的大小进行训练,以便后续可以逐渐降低大小。
4. 如果当前的训练步数self.global_step大于4,则使用np.random.choice从大小范围中随机选取一个大小,步长为16。
5. 如果选取的新大小new_resize与x的第3个维度大小不同,则使用双三次插值方法(mode="bicubic")将x的大小调整到新的大小new_resize。
6. 将调整后的x从计算图中分离出来(detach),然后返回。这个操作是为了避免在训练过程中反向传播时,对调整操作进行反向传播。
阅读全文