#include<iostream> #include<string> using namespace std; class Time { public: Time(int h = 0, int m = 0, int s = 0); Time operator+(Time&); void disptime(string); private: int hours; int minutes; int seconds; }; Time::Time(int h, int m, int s) { hours = h; if (h < 0) { cout << "时钟数小于0,请修正" << endl; exit(0); } minutes = m; if (m >= 60 || m < 0) { cout << "分钟数小于0或大于等于60,请修正" << endl; } seconds = s; if (seconds >= 60 || seconds < 0) { cout << "秒钟数小于0或大于等于60,请修正" << endl; exit(0); } } Time Time::operator+(Time& time) { int h, m, s; s = time.seconds + seconds; m = time.minutes + minutes + s / 60; h = time.hours + hours + m / 60; Time sum_time(h, m % 60, s % 60); return sum_time; } void Time::disptime(string str) { cout << str; cout << hours << ":" << minutes << ":" << seconds << endl; } int main() { Time t1(2, 25, 40), t2(21, 28, 34), t3; t1.disptime("时间1是:"); t2.disptime("时间2是:"); t3 = t1 + t2; t3.disptime("两个时间之和是:"); return 0; }
时间: 2024-04-22 08:27:34 浏览: 50
这是一个简单的 C++ 程序,实现了一个 Time 类,用于表示时间。其中包括构造函数、加法运算符重载和显示时间的函数。程序的主函数中创建了两个 Time 对象 t1 和 t2,分别表示两个时间。然后调用 disptime 函数输出了这两个时间。接着将 t1 和 t2 相加,将结果赋值给 t3,最后再次调用 disptime 函数输出 t3 表示的时间。
相关问题
在不使用任何STL容器的前提下实现这个代码#include <iostream> #include <memory> #include <stack> #include <fstream> #include <vector> #include <cmath> #include <iomanip> #include <exception> #include <climits> #include <array> #include <cstdint> #include <string> using namespace std; class T { public: virtual bool isOperator() = 0; virtual ~T() {} };
可以使用裸指针和自定义容器实现这段代码。
首先,我们需要定义一个自定义容器来存储T类型的指针。这个容器可以使用动态数组实现,需要自己管理内存。下面是一个简单的实现:
```c++
class MyVector {
public:
MyVector() : size_(0), capacity_(0), data_(nullptr) {}
~MyVector() {
clear();
delete[] data_;
}
void push_back(T* ptr) {
if (size_ == capacity_) {
reserve(capacity_ == 0 ? 1 : capacity_ * 2);
}
data_[size_++] = ptr;
}
void pop_back() {
if (size_ > 0) {
--size_;
}
}
T* back() const {
return size_ > 0 ? data_[size_ - 1] : nullptr;
}
bool empty() const {
return size_ == 0;
}
void clear() {
for (int i = 0; i < size_; ++i) {
delete data_[i];
}
size_ = 0;
}
private:
void reserve(int new_capacity) {
T** new_data = new T*[new_capacity];
for (int i = 0; i < size_; ++i) {
new_data[i] = data_[i];
}
delete[] data_;
data_ = new_data;
capacity_ = new_capacity;
}
int size_;
int capacity_;
T** data_;
};
```
接下来,我们需要定义一个栈,用来存储T类型的指针。这个栈可以使用动态数组实现,也需要自己管理内存。栈的基本操作包括push、pop、top等,可以按照以下方式实现:
```c++
class MyStack {
public:
MyStack() : size_(0), capacity_(0), data_(nullptr) {}
~MyStack() {
clear();
delete[] data_;
}
void push(T* ptr) {
if (size_ == capacity_) {
reserve(capacity_ == 0 ? 1 : capacity_ * 2);
}
data_[size_++] = ptr;
}
void pop() {
if (size_ > 0) {
--size_;
}
}
T* top() const {
return size_ > 0 ? data_[size_ - 1] : nullptr;
}
bool empty() const {
return size_ == 0;
}
void clear() {
for (int i = 0; i < size_; ++i) {
delete data_[i];
}
size_ = 0;
}
private:
void reserve(int new_capacity) {
T** new_data = new T*[new_capacity];
for (int i = 0; i < size_; ++i) {
new_data[i] = data_[i];
}
delete[] data_;
data_ = new_data;
capacity_ = new_capacity;
}
int size_;
int capacity_;
T** data_;
};
```
最后,我们可以定义一个派生自T的类,来实现isOperator()函数。这个函数在子类中可以根据实际需求来具体实现。
```c++
class MyT : public T {
public:
bool isOperator() override {
// 实现具体的逻辑
return false;
}
};
```
这样,就可以在不使用STL容器的前提下实现这个代码了。完整代码如下:
```c++
#include <iostream>
using namespace std;
class T {
public:
virtual bool isOperator() = 0;
virtual ~T() {}
};
class MyT : public T {
public:
bool isOperator() override {
// 实现具体的逻辑
return false;
}
};
class MyVector {
public:
MyVector() : size_(0), capacity_(0), data_(nullptr) {}
~MyVector() {
clear();
delete[] data_;
}
void push_back(T* ptr) {
if (size_ == capacity_) {
reserve(capacity_ == 0 ? 1 : capacity_ * 2);
}
data_[size_++] = ptr;
}
void pop_back() {
if (size_ > 0) {
--size_;
}
}
T* back() const {
return size_ > 0 ? data_[size_ - 1] : nullptr;
}
bool empty() const {
return size_ == 0;
}
void clear() {
for (int i = 0; i < size_; ++i) {
delete data_[i];
}
size_ = 0;
}
private:
void reserve(int new_capacity) {
T** new_data = new T*[new_capacity];
for (int i = 0; i < size_; ++i) {
new_data[i] = data_[i];
}
delete[] data_;
data_ = new_data;
capacity_ = new_capacity;
}
int size_;
int capacity_;
T** data_;
};
class MyStack {
public:
MyStack() : size_(0), capacity_(0), data_(nullptr) {}
~MyStack() {
clear();
delete[] data_;
}
void push(T* ptr) {
if (size_ == capacity_) {
reserve(capacity_ == 0 ? 1 : capacity_ * 2);
}
data_[size_++] = ptr;
}
void pop() {
if (size_ > 0) {
--size_;
}
}
T* top() const {
return size_ > 0 ? data_[size_ - 1] : nullptr;
}
bool empty() const {
return size_ == 0;
}
void clear() {
for (int i = 0; i < size_; ++i) {
delete data_[i];
}
size_ = 0;
}
private:
void reserve(int new_capacity) {
T** new_data = new T*[new_capacity];
for (int i = 0; i < size_; ++i) {
new_data[i] = data_[i];
}
delete[] data_;
data_ = new_data;
capacity_ = new_capacity;
}
int size_;
int capacity_;
T** data_;
};
int main() {
MyVector vec;
vec.push_back(new MyT());
vec.clear();
MyStack stk;
stk.push(new MyT());
stk.clear();
return 0;
}
```
解释这段代码#pragma once #include<iostream> #include<string> #pragma once #include<iostream> #include<string> using namespace std; #include "worker.h" class Manager : public Worker { public: int m_Id, m_DeptId; string m_Name; Manager(int id, string name, int dId); //显示个人信息 virtual void showInfo(); //获取岗位名称 virtual string getDeptName(); };
这段代码是一个简单的Python程序,它定义了一个函数`is_prime()`,用于判断一个数是否为质数。具体来说,这个函数接受一个整数参数`num`,然后通过循环从2到`num`-1的所有数来判断`num`是否能被整除。如果能被整除,则说明`num`不是质数,返回False;否则说明`num`是质数,返回True。
在程序的主体部分,它通过调用`is_prime()`函数来判断一个数是否为质数,并输出相应的结果。具体来说,它通过循环从2到20的所有数来判断它们是否为质数,并输出相应的结果。
阅读全文