C++alphabeta剪枝算法五子棋

时间: 2023-09-11 16:04:54 浏览: 60
C++实现Alpha-Beta剪枝算法的五子棋代码: ```c++ #include <iostream> #include <vector> #include <algorithm> using namespace std; const int N = 15; // 棋盘大小 const int INF = 9999999; // 无穷大 int board[N][N]; // 棋盘 int player; // 玩家 int computer; // AI int depth = 3; // 搜索深度 // 初始化棋盘 void init_board() { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { board[i][j] = 0; } } } // 打印棋盘 void print_board() { cout << " "; for (int i = 0; i < N; i++) { cout << " " << i + 1; } cout << endl; for (int i = 0; i < N; i++) { cout << i + 1 << " "; for (int j = 0; j < N; j++) { if (board[i][j] == player) { cout << "O "; } else if (board[i][j] == computer) { cout << "X "; } else { cout << "+ "; } } cout << endl; } } // 判断游戏是否结束 bool game_over(int p) { // 横向判断 for (int i = 0; i < N; i++) { for (int j = 0; j <= N - 5; j++) { if (board[i][j] == p && board[i][j + 1] == p && board[i][j + 2] == p && board[i][j + 3] == p && board[i][j + 4] == p) { return true; } } } // 纵向判断 for (int i = 0; i <= N - 5; i++) { for (int j = 0; j < N; j++) { if (board[i][j] == p && board[i + 1][j] == p && board[i + 2][j] == p && board[i + 3][j] == p && board[i + 4][j] == p) { return true; } } } // 斜向判断 for (int i = 0; i <= N - 5; i++) { for (int j = 0; j <= N - 5; j++) { if (board[i][j] == p && board[i + 1][j + 1] == p && board[i + 2][j + 2] == p && board[i + 3][j + 3] == p && board[i + 4][j + 4] == p) { return true; } } } // 反斜向判断 for (int i = 0; i <= N - 5; i++) { for (int j = 4; j < N; j++) { if (board[i][j] == p && board[i + 1][j - 1] == p && board[i + 2][j - 2] == p && board[i + 3][j - 3] == p && board[i + 4][j - 4] == p) { return true; } } } return false; } // 评估函数 int evaluate(int p) { int score = 0; // 横向评估 for (int i = 0; i < N; i++) { for (int j = 0; j <= N - 5; j++) { int cnt = 0; for (int k = 0; k < 5; k++) { if (board[i][j + k] == p) { cnt++; } else if (board[i][j + k] != 0) { cnt = 0; break; } } score += cnt * cnt; } } // 纵向评估 for (int i = 0; i <= N - 5; i++) { for (int j = 0; j < N; j++) { int cnt = 0; for (int k = 0; k < 5; k++) { if (board[i + k][j] == p) { cnt++; } else if (board[i + k][j] != 0) { cnt = 0; break; } } score += cnt * cnt; } } // 斜向评估 for (int i = 0; i <= N - 5; i++) { for (int j = 0; j <= N - 5; j++) { int cnt = 0; for (int k = 0; k < 5; k++) { if (board[i + k][j + k] == p) { cnt++; } else if (board[i + k][j + k] != 0) { cnt = 0; break; } } score += cnt * cnt; } } // 反斜向评估 for (int i = 0; i <= N - 5; i++) { for (int j = 4; j < N; j++) { int cnt = 0; for (int k = 0; k < 5; k++) { if (board[i + k][j - k] == p) { cnt++; } else if (board[i + k][j - k] != 0) { cnt = 0; break; } } score += cnt * cnt; } } return score; } // Alpha-Beta剪枝搜索 int alphabeta_search(int depth, int alpha, int beta, int p) { if (depth == 0 || game_over(player) || game_over(computer)) { return evaluate(computer) - evaluate(player); } vector<pair<int, int>> moves; for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (board[i][j] == 0) { moves.push_back(make_pair(i, j)); } } } if (p == computer) { int value = -INF; for (auto move : moves) { int i = move.first, j = move.second; board[i][j] = p; value = max(value, alphabeta_search(depth - 1, alpha, beta, player)); board[i][j] = 0; alpha = max(alpha, value); if (beta <= alpha) { break; } } return value; } else { int value = INF; for (auto move : moves) { int i = move.first, j = move.second; board[i][j] = p; value = min(value, alphabeta_search(depth - 1, alpha, beta, computer)); board[i][j] = 0; beta = min(beta, value); if (beta <= alpha) { break; } } return value; } } // AI下棋 void computer_move() { int value = -INF; vector<pair<int, int>> moves; for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (board[i][j] == 0) { board[i][j] = computer; int tmp = alphabeta_search(depth - 1, -INF, INF, player); board[i][j] = 0; if (tmp > value) { value = tmp; moves.clear(); moves.push_back(make_pair(i, j)); } else if (tmp == value) { moves.push_back(make_pair(i, j)); } } } } int idx = rand() % moves.size(); int i = moves[idx].first, j = moves[idx].second; board[i][j] = computer; cout << "AI下棋: (" << i + 1 << "," << j + 1 << ")" << endl; } int main() { init_board(); cout << "请选择先手(1:玩家 2:AI): "; cin >> player; if (player == 1) { computer = 2; } else { computer = 1; computer_move(); print_board(); } while (true) { int x, y; cout << "请输入落子位置(x,y): "; cin >> x >> y; if (x < 1 || x > N || y < 1 || y > N || board[x - 1][y - 1] != 0) { cout << "无效落子,请重新输入!" << endl; continue; } board[x - 1][y - 1] = player; if (game_over(player)) { cout << "你赢了!" << endl; break; } if (game_over(computer)) { cout << "AI赢了!" << endl; break; } computer_move(); print_board(); if (game_over(player)) { cout << "你赢了!" << endl; break; } if (game_over(computer)) { cout << "AI赢了!" << endl; break; } } return 0; } ``` 这里使用了Alpha-Beta剪枝算法进行搜索,评估函数使用了一种简单的方式,即计算连续的空位个数的平方。可以根据需要进行更改。

相关推荐

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

FT-Prog-v3.12.38.643-FTD USB 工作模式设定及eprom读写

FT_Prog_v3.12.38.643--FTD USB 工作模式设定及eprom读写
recommend-type

matlab基于RRT和人工势场法混合算法的路径规划.zip

matlab基于RRT和人工势场法混合算法的路径规划.zip
recommend-type

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。