使用c++实现alphabeta剪枝算法的五子棋

时间: 2023-09-11 20:05:06 浏览: 47
以下是使用C++实现alphabeta剪枝算法的五子棋的代码示例: ```c++ #include <iostream> #include <vector> #include <algorithm> using namespace std; const int BOARD_SIZE = 15; enum class ChessType { NONE, BLACK, WHITE }; struct ChessBoard { ChessType board[BOARD_SIZE][BOARD_SIZE]; ChessType current_player; int last_row, last_col; ChessBoard() { for (int i = 0; i < BOARD_SIZE; i++) { for (int j = 0; j < BOARD_SIZE; j++) { board[i][j] = ChessType::NONE; } } current_player = ChessType::BLACK; last_row = -1; last_col = -1; } void print() const { cout << " "; for (int i = 0; i < BOARD_SIZE; i++) { cout << i << " "; } cout << endl; for (int i = 0; i < BOARD_SIZE; i++) { cout << i << " "; for (int j = 0; j < BOARD_SIZE; j++) { switch (board[i][j]) { case ChessType::NONE: cout << "+ "; break; case ChessType::BLACK: cout << "X "; break; case ChessType::WHITE: cout << "O "; break; } } cout << endl; } } bool put(int row, int col) { if (row < 0 || row >= BOARD_SIZE || col < 0 || col >= BOARD_SIZE || board[row][col] != ChessType::NONE) { return false; } board[row][col] = current_player; last_row = row; last_col = col; return true; } void undo() { board[last_row][last_col] = ChessType::NONE; last_row = -1; last_col = -1; current_player = (current_player == ChessType::BLACK) ? ChessType::WHITE : ChessType::BLACK; } bool is_win() const { if (last_row == -1 || last_col == -1) { return false; } const ChessType win_player = board[last_row][last_col]; int count = 0; // 横向 for (int i = max(last_col - 4, 0); i <= min(last_col + 4, BOARD_SIZE - 1); i++) { if (board[last_row][i] == win_player) { count++; if (count >= 5) { return true; } } else { count = 0; } } count = 0; // 纵向 for (int i = max(last_row - 4, 0); i <= min(last_row + 4, BOARD_SIZE - 1); i++) { if (board[i][last_col] == win_player) { count++; if (count >= 5) { return true; } } else { count = 0; } } count = 0; // 斜向(左上到右下) for (int i = max(last_row - 4, 0), j = max(last_col - 4, 0); i <= min(last_row + 4, BOARD_SIZE - 1) && j <= min(last_col + 4, BOARD_SIZE - 1); i++, j++) { if (board[i][j] == win_player) { count++; if (count >= 5) { return true; } } else { count = 0; } } count = 0; // 斜向(左下到右上) for (int i = min(last_row + 4, BOARD_SIZE - 1), j = max(last_col - 4, 0); i >= max(last_row - 4, 0) && j <= min(last_col + 4, BOARD_SIZE - 1); i--, j++) { if (board[i][j] == win_player) { count++; if (count >= 5) { return true; } } else { count = 0; } } return false; } vector<pair<int, int>> get_possible_positions() const { vector<pair<int, int>> positions; for (int i = 0; i < BOARD_SIZE; i++) { for (int j = 0; j < BOARD_SIZE; j++) { if (board[i][j] == ChessType::NONE) { positions.emplace_back(i, j); } } } return positions; } }; int evaluate(const ChessBoard& board, ChessType player) { int score = 0; int count = 0; // 横向 for (int i = 0; i < BOARD_SIZE; i++) { for (int j = 0; j < BOARD_SIZE; j++) { if (board.board[i][j] == player) { count++; } else { score += count * count; count = 0; } } score += count * count; count = 0; } // 纵向 for (int j = 0; j < BOARD_SIZE; j++) { for (int i = 0; i < BOARD_SIZE; i++) { if (board.board[i][j] == player) { count++; } else { score += count * count; count = 0; } } score += count * count; count = 0; } // 斜向(左上到右下) for (int k = 0; k < BOARD_SIZE; k++) { for (int i = max(k - 4, 0), j = max(k - 4, 0); i <= min(k + 4, BOARD_SIZE - 1) && j <= min(k + 4, BOARD_SIZE - 1); i++, j++) { if (board.board[i][j] == player) { count++; } else { score += count * count; count = 0; } } score += count * count; count = 0; } // 斜向(左下到右上) for (int k = 0; k < BOARD_SIZE; k++) { for (int i = min(k + 4, BOARD_SIZE - 1), j = max(k - 4, 0); i >= max(k - 4, 0) && j <= min(k + 4, BOARD_SIZE - 1); i--, j++) { if (board.board[i][j] == player) { count++; } else { score += count * count; count = 0; } } score += count * count; count = 0; } return score; } int alphabeta(const ChessBoard& board, int depth, int alpha, int beta, bool maximizing_player) { if (depth == 0 || board.is_win()) { return evaluate(board, ChessType::BLACK) - evaluate(board, ChessType::WHITE); } if (maximizing_player) { int max_score = INT_MIN; for (auto position : board.get_possible_positions()) { ChessBoard new_board = board; new_board.current_player = ChessType::BLACK; new_board.put(position.first, position.second); int score = alphabeta(new_board, depth - 1, alpha, beta, false); max_score = max(max_score, score); alpha = max(alpha, score); if (beta <= alpha) { break; } } return max_score; } else { int min_score = INT_MAX; for (auto position : board.get_possible_positions()) { ChessBoard new_board = board; new_board.current_player = ChessType::WHITE; new_board.put(position.first, position.second); int score = alphabeta(new_board, depth - 1, alpha, beta, true); min_score = min(min_score, score); beta = min(beta, score); if (beta <= alpha) { break; } } return min_score; } } pair<int, int> alphabeta_search(const ChessBoard& board, int depth) { pair<int, int> best_position(-1, -1); int best_score = INT_MIN; for (auto position : board.get_possible_positions()) { ChessBoard new_board = board; new_board.current_player = ChessType::BLACK; new_board.put(position.first, position.second); int score = alphabeta(new_board, depth, INT_MIN, INT_MAX, false); if (score > best_score) { best_score = score; best_position = position; } } return best_position; } int main() { ChessBoard board; board.print(); while (!board.is_win()) { if (board.current_player == ChessType::BLACK) { int row, col; cout << "Please input the row and col: "; cin >> row >> col; while (!board.put(row, col)) { cout << "Invalid position, please input again: "; cin >> row >> col; } } else { pair<int, int> position = alphabeta_search(board, 4); cout << "The AI put at (" << position.first << ", " << position.second << ")" << endl; board.put(position.first, position.second); } board.print(); } cout << "Game over!" << endl; return 0; } ``` 这个示例实现了五子棋游戏的基本逻辑和alphabeta剪枝算法。其中,evaluate函数用于评估当前局面的得分,alphabeta函数用于搜索最佳下法,alphabeta_search函数用于搜索整个搜索树并返回最佳下法。在主函数中,玩家可以通过命令行输入他们的下法,而AI则使用alphabeta剪枝算法搜索最佳下法。

相关推荐

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

FT-Prog-v3.12.38.643-FTD USB 工作模式设定及eprom读写

FT_Prog_v3.12.38.643--FTD USB 工作模式设定及eprom读写
recommend-type

matlab基于RRT和人工势场法混合算法的路径规划.zip

matlab基于RRT和人工势场法混合算法的路径规划.zip
recommend-type

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。